Die Intelligent Industrial Production

IIoT-Plattform

KI-stark und flexibel: die Intelligent Industrial Production-Plattform (IIP-Plattform) ist eine IIoT-Plattform der nächsten Generation.

Sie verbindet Industrieanlagen und Maschinen nicht nur an einem Standort, sondern auch standort- und unternehmensübergreifend. Durch ihre Offenheit auf technischer und betrieblicher Ebene ist die Plattform herstellerunabhängig und ermöglicht einen anwenderfreundlichen Zugang zu Künstlicher Intelligenz (KI) auf sichere und flexible Weise. Dabei basiert sie auf relevanten Standards und bestehenden Open-Source-Komponenten.

GitHub Download

Auf GitHub finden Sie alle Teile und Komponenten rund um die IIP-Plattform einschließlich Kompatibilitätstests und Benchmarks für die Interoperabilität.

KI-stark und flexibel: die Intelligent Industrial Production-Plattform (IIP-Plattform) ist eine IIoT-Plattform der nächsten Generation.

Sie verbindet Industrieanlagen und Maschinen nicht nur an einem Standort, sondern auch standort- und unternehmensübergreifend. Durch ihre Offenheit auf technischer und betrieblicher Ebene ist die Plattform herstellerunabhängig und ermöglicht einen anwenderfreundlichen Zugang zu Künstlicher Intelligenz (KI) auf sichere und flexible Weise. Dabei basiert sie auf relevanten Standards und bestehenden Open-Source-Komponenten.

GitHub Download

Auf GitHub finden Sie alle Teile und Komponenten rund um die IIP-Plattform einschließlich Kompatibilitätstests und Benchmarks für die Interoperabilität.

offen

erweiterbar

sicher

konfigurierbar

selbstanpassend

Virtuelle Plattform

Die IIP-Plattform ist eine virtuelle Plattform, die bestehende, bereits installierte Lösungen nutzt, indem sie sich mit ihnen integriert, zugängliche Outputs und Ressourcen nutzt, sie mit KI anreichert und, falls gewünscht, KI-angereicherte Informationen in bereits genutzte Systeme zurückspeist. Das Ziel unserer Plattform ist nicht, bestehende Plattformen zu ersetzen, sondern sie zu erweitern.

Neuartige Plattformkonzepte

Das Kernziel der Plattformentwicklung war die Erforschung und Demonstration neuartiger Plattformkonzepte für Industrie 4.0. So finden sich auf der IIP-Plattform z.B. Asset-Verwaltungsschalen als Schnittstellen für Softwarekomponenten und Ressourcen, Unified Edge Deployment, ein KI-Toolkit oder die nahtlose Konfiguration der Plattform von Netzwerkeinstellungen über Dienste bis hin zu Anwendungen, die auf der Plattform laufen.

Vorteile der IIP-Plattform

Für maschinenbetreibende KMU

Für maschinenbetreibende KMUs im innovativen Mittelstand, die In-House oder firmenübergreifend innovative IIoT KI-Lösungen entwickeln wollen sowie innovative neue Nutzungsmöglichkeiten für ihre Produktionsdaten entdecken möchten, bietet die KI-fähige IIP-Plattform eine äußerst flexible Entwicklungsumgebung und leicht zugängliche Infrastruktur, welche ohne Vendor-Lock-In eine offene, Open-Source-basierte Umgebung mit höchster Interoperabilität unter Verwendung von IIoT-Standards bietet, um individuelle Lösungen zu entwickeln, zu evaluieren und sowohl on-premise als auch cloud-basiert zu betreiben.

Für Applikationsentwickler

Für Applikationsentwickler (im Bereich Industrie 4.0), die innovative IIoT KI-Lösungen entwickeln und anbieten oder IIoT-datenbasierte Lösungen anbieten, bietet die KI-fähige IIP-Plattform eine äußerst flexible Entwicklungsumgebung und leicht zugängliche Infrastruktur, welche die Entwicklung von neuen Lösungen unterstützt. Sie bietet Applikationsentwicklern die Möglichkeit, bestehende Lösungen über die Plattform anzubieten und zu betreiben. Darüber hinaus können sie Potentiale für neue Lösungen in Kooperation mit Industriepartnern innerhalb der Plattform finden.

Vorteile der IIP-Plattform

Für maschinen-betreibende KMU

Für maschinenbetreibende KMUs im innovativen Mittelstand, die In-House oder firmenübergreifend innovative IIoT KI-Lösungen entwickeln wollen sowie innovative neue Nutzungsmöglichkeiten für ihre Produktionsdaten entdecken möchten, bietet die KI-fähige IIP-Plattform eine äußerst flexible Entwicklungsumgebung und leicht zugängliche Infrastruktur, welche ohne Vendor-Lock-In eine offene, Open-Source-basierte Umgebung mit höchster Interoperabilität unter Verwendung von IIoT-Standards bietet, um individuelle Lösungen zu entwickeln, zu evaluieren und sowohl on-premise als auch cloud-basiert zu betreiben.

Für Applikations-entwickler

Für Applikationsentwickler (im Bereich Industrie 4.0), die innovative IIoT KI-Lösungen entwickeln und anbieten oder IIoT-datenbasierte Lösungen anbieten, bietet die KI-fähige IIP-Plattform eine äußerst flexible Entwicklungsumgebung und leicht zugängliche Infrastruktur, welche die Entwicklung von neuen Lösungen unterstützt. Sie bietet Applikationsentwicklern die Möglichkeit, bestehende Lösungen über die Plattform anzubieten und zu betreiben. Darüber hinaus können sie Potentiale für neue Lösungen in Kooperation mit Industriepartnern innerhalb der Plattform finden.

Zusammensetzung

Offener und erweiterbarer KI-Baukasten, der wiederverwendbare KI-Bausteine in Form von Diensten bzw. Komponenten enthält. Die Plattform stellt hier Schnittstellen und Mechanismen zur Verfügung, um die KI-Dienste auf Ressourcen zu verteilen und mit Daten zu versorgen bzw. diese Daten nachfolgenden Komponenten zur Verfügung zu stellen – sowohl für das Training als auch für die Laufzeit/Prädiktion.

Mechanismus zum heterogenen, dynamischen Deployment ausgewählter Plattform-Funktionalitäten wie KI-Bausteine auf verschiedene Ressourcen. Dabei entscheidet die Plattform aufgrund von Informationen wie Zusicherungen und Ressourcenbedarfe über die zu verteilenden Dienste bzw. Komponenten, die sich in Form von Verwaltungsschalen selbst beschreiben. Analog werden die möglichen Ziel-Ressourcen, wie beispielsweise Edge-Devices oder GPU-Server in Form von Verwaltungsschalen beschrieben. Als Deployment-Einheiten sollen Container (z.B. Docker-Container) verwendet werden. Primär zielt die IIP-Plattform auf vor-Ort/on-premise Installationen ab.

Zur systematischen und konsistenten Konfigurierbarkeit der Plattform setzt die IIP-Plattform Techniken zur Variantenbildung ein. Dies ermöglicht es, bereits vor der Ausführung der Plattform zu bestimmen, ob die jeweilige Plattformkonfiguration konsistent und lauffähig ist und vereinfacht damit Installations- und Wartungsarbeiten.

Die Konfigurationsmodellierung/Konfigurierbarkeit wird durch (dynamische) Informationen aus den Verwaltungsschalen der eingesetzten Komponenten ergänzt. Dadurch wird eine Optimierung des heterogenen Deployments auf die verfügbaren Ressourcen, aber auch des konkreten Einsatzes von KI-Komponenten in den Containern ermöglicht. Die Optimierung bezieht sich zunächst auf eine Zuordnung zum Plattform- bzw. Applikationsstart basierend auf (dynamischen) Informationen aus den Verwaltungsschalen der Ressourcen.

Die Optimierung des Deployments und der verwendeten KI-Dienste / -Komponenten kann aber ebenso zur Laufzeit erfolgen, d.h., zur Adaptivität der Plattform führen. Hierfür wurden geeignete Mechanismen zur Ableitung von Adaptionsentscheidungen, zur Laufzeitanpassung von Containern, Komponenten und (KI-)Modellen untersucht und realisiert.

Die Plattform stellt diverse Sicherheitsmechanismen wie beispielsweise Speicherdienste mit verschiedenen Qualitätscharakteristiken (inklusive sichere bzw. verschlüsselte Speicherdienste) bereit und allen Diensten / Komponenten, insbesondere den Edge Geräten, zur Verfügung.

Artikel 25 DSGVO (Datenschutz durch Technikgestaltung und durch datenschutzfreundliche Voreinstellungen, PbD – Privacy by Design) schreibt vor, dass sowohl zum Zeitpunkt der Festlegung der Mittel für die Verarbeitung als auch zum Zeitpunkt der eigentlichen Verarbeitung geeignete technische und organisatorische Maßnahmen (z.B. Security & Privacy Controls, die dafür ausgelegt sind, die Datenschutzgrundsätze wie etwa Datenminimierung wirksam umzusetzen und die notwendigen Garantien in die Verarbeitung aufzunehmen) in einem System integriert werden müssen.

Zusammensetzung

Offener und erweiterbarer KI-Baukasten, der wiederverwendbare KI-Bausteine in Form von Diensten bzw. Komponenten enthält. Die Plattform stellt hier Schnittstellen und Mechanismen zur Verfügung, um die KI-Dienste auf Ressourcen zu verteilen und mit Daten zu versorgen bzw. diese Daten nachfolgenden Komponenten zur Verfügung zu stellen – sowohl für das Training als auch für die Laufzeit/Prädiktion.

Mechanismus zum heterogenen, dynamischen Deployment ausgewählter Plattform-Funktionalitäten wie KI-Bausteine auf verschiedene Ressourcen. Dabei entscheidet die Plattform aufgrund von Informationen wie Zusicherungen und Ressourcenbedarfe über die zu verteilenden Dienste bzw. Komponenten, die sich in Form von Verwaltungsschalen selbst beschreiben. Analog werden die möglichen Ziel-Ressourcen, wie beispielsweise Edge-Devices oder GPU-Server in Form von Verwaltungsschalen beschrieben. Als Deployment-Einheiten sollen Container (z.B. Docker-Container) verwendet werden. Primär zielt die IIP-Plattform auf vor-Ort/on-premise Installationen ab.

Zur systematischen und konsistenten Konfigurierbarkeit der Plattform setzt die IIP-Plattform Techniken zur Variantenbildung ein. Dies ermöglicht es, bereits vor der Ausführung der Plattform zu bestimmen, ob die jeweilige Plattformkonfiguration konsistent und lauffähig ist und vereinfacht damit Installations- und Wartungsarbeiten.

Die Konfigurationsmodellierung/Konfigurierbarkeit wird durch (dynamische) Informationen aus den Verwaltungsschalen der eingesetzten Komponenten ergänzt. Dadurch wird eine Optimierung des heterogenen Deployments auf die verfügbaren Ressourcen, aber auch des konkreten Einsatzes von KI-Komponenten in den Containern ermöglicht. Die Optimierung bezieht sich zunächst auf eine Zuordnung zum Plattform- bzw. Applikationsstart basierend auf (dynamischen) Informationen aus den Verwaltungsschalen der Ressourcen.

Die Optimierung des Deployments und der verwendeten KI-Dienste / -Komponenten kann aber ebenso zur Laufzeit erfolgen, d.h., zur Adaptivität der Plattform führen. Hierfür wurden geeignete Mechanismen zur Ableitung von Adaptionsentscheidungen, zur Laufzeitanpassung von Containern, Komponenten und (KI-)Modellen untersucht und realisiert.

Die Plattform stellt diverse Sicherheitsmechanismen wie beispielsweise Speicherdienste mit verschiedenen Qualitätscharakteristiken (inklusive sichere bzw. verschlüsselte Speicherdienste) bereit und allen Diensten / Komponenten, insbesondere den Edge Geräten, zur Verfügung.

Artikel 25 DSGVO (Datenschutz durch Technikgestaltung und durch datenschutzfreundliche Voreinstellungen, PbD – Privacy by Design) schreibt vor, dass sowohl zum Zeitpunkt der Festlegung der Mittel für die Verarbeitung als auch zum Zeitpunkt der eigentlichen Verarbeitung geeignete technische und organisatorische Maßnahmen (z.B. Security & Privacy Controls, die dafür ausgelegt sind, die Datenschutzgrundsätze wie etwa Datenminimierung wirksam umzusetzen und die notwendigen Garantien in die Verarbeitung aufzunehmen) in einem System integriert werden müssen.

Veröffentlichungen zur IIP-Plattform

PlatformHandbook-final-V0.2

IIP-Plattform-Handbuch v0.3.0

Das Plattform-Handbuch bietet Einblicke in die Ideen und Konzepte hinter Design und Realisierung der IIP-Plattform, von einer übergreifenden Schichtenarchitektur bis zu Mechanismen wie dem Konfigurationsmodell.

IIP-Plattform Anforderungen

Anforderungen an die IIP-Plattform (Funktionale und Qualitäts-Sicht)

Die Übersicht über die Anforderungen an die IIP-Plattform basiert auf Diskussionen mit unseren Partnern und Teilprojekten sowie auf unserer Übersicht über aktuelle Industrie 4.0 Plattformen und eine Anforderungserhebung auf Benutzerebene.

IIP-Plattform Anforderungen

Anforderungen an die IIP-Plattform (Nutzungssicht)

Die Übersicht über die Anforderungen an die IIP-Plattform basiert auf Diskussionen mit unseren Partnern und Teilprojekten sowie auf unserer Übersicht über aktuelle Industrie 4.0 Plattformen und eine Anforderungserhebung auf Benutzerebene.

Kontakt

Bei Fragen und Anregungen kontaktieren Sie gern das IIP-Plattform-Team vom Inst. für Informatik – Abteilung Software Systems Engineering der Uni Hildesheim

Dr. Holger Eichelberger

Dr. Christian Sauer

Ahmad Alamoush

Kontakt

Bei Fragen und Anregungen kontaktieren Sie gern das IIP-Plattform-Team vom Inst. für Informatik – Abteilung Software Systems Engineering der Uni Hildesheim

Dr. Holger Eichelberger

Dr. Christian Sauer

Ahmad Alamoush