

Platform Overview

Gefördert durch:

IIP-Ecosphere Platform

Contents

- From Vision to Platform
 - From Activities to Requirements
 - Platform Design Process
 - Creating the Platform Architecture
 - Platform Architecture
- Kinds of Services within the Platform
- Service Meshes and Applications
- Distributed deployment and execution of Services
- Component Interaction
- Code Generation in the Platform
- Platform Documentation

From Vision to Platform

From Activities to Requirements

Following the Industrial Internet Reference Architecture (IIRA) we:

- 1. Created a Usage view, capturing the Entities, Roles and Activities we need and wanted to enable in the platform.
- Based on the elicited Activities and on the elicited technical requirements we derived the requirements of the Functional view of the platform

Platform Design Process

- Start with an open-minded pre-survey, e.g., surveys on IIoT platforms *
- Create a joint vision: Identify further (research-) relevant topics.
- 3. Stabilize the vision by detailed surveys, i.e., assure the gaps through focused surveys *
- 4. Create a usage and a functional view:
 - Use joint vision as scope
 - Elicit the requirements in two complementing views.
 - Compare views and assess differences.

https://www.thinkmind.org/index.php?view=article&articleid=softeng_2022_1_20_90004

Creating the Platform Architecture

- We identified 18 entities and 19 roles within the platform
- Based on these we were able to elicit and describe 43 edge-related technical activities and 27 Al-related activities
- These activities formed the base for 141 toplevel requirements and the 181 subrequirements

Entities (18) Roles (19)

- Edge device provider
- Data scientist

Activities for ECS management (7)

- Adding Entities (4)
- Removing Entities (4)
- Provision of Entities (8)
- Provision of service and application template (4)
- Service configuration and orchestration (6)
- Setting up operational configurations (9)
- Activities for (distributed) applications (8)
- Simulating the integration
- Simulating the deployment
- Visualizing the results

Activities for AI services and processes (5)

- Activities for data exploration (5)
- Activities for model training and evaluation (10)
- Training of AI models
- Provision of intermediary model results
- Continuous application of a model on new data
- Re-calibration of model parameters
- Use of Al applications/services (2)
- Analysis/Prediction of performance and accuracy (5)
- Provision of metrics for an application/service
- Analysis of metadata to detect deviation/model drift

Platform Architecture

Kinds of Services in the Platform

Platform-provided Service:

- Generic, parametrized services
- Can be applied to various setting

Application-specific Services (often Al-Services):

Designed for use with a specific application

Hybrid Services:

Generic Services that use plug-Ins or add-ons to perform application-specific tasks

Service Mesh and Application (1/2)

Services within the platform can be chained, e.g. orchestrated, into Service Meshes, forming an Applications as follows:

The basic approach is to chain generic (parametrized) platform-services to get data from a source, link this to further processing services, for example an application-specific Al-service and pass the output to a data sink via another generic (parametrized) platform-service

Service Mesh and Application (2/2)

Abstracted view of an Application based on a Service Mesh

- data connector (interface) induced from a field device (e.g. sensor)
- data connector (interface) induced from a service
- data connector (interface) induced from an application
- data connector (interface) induced from a sink or source (e.g. HMI, business process, MES)
- data connector (interface) induced from a data lake (e.g. ERP-system)

The platform git-hub repository provides several different examples of applications.

Distributed Execution of Services

Services in the platform can be deployed and executed in a distributed manner both locally (D1) and remote (D2). Their coordination is ensured by the central platform AAS server.

Component Interaction

Code Generation by the Platform

The IIP-Ecosphere platform generates much of the neccessary "glue" code, such as configurations, connectors, service- and application-descriptions and AAS descriptions of components automatically.

The automated code generation is employing the Integrated Variability Modeling Language (IVML).

Code generation also performs a consistency and dependency constraint check, only allowing valid configurations.

Platform Documentation

IIP-Ecosphere website: https://www.iip-ecosphere.de/

Platform handbook:

https://www.iip-ecosphere.de/wp-content/uploads/2022/09/PlatformHandbook-final-V0.4.pdf

Requirements documentation:

https://www.iip-ecosphere.eu/wp-content/uploads/2021/03/IIP-2021_002-eng.pdf

Usage View documentation:

https://www.iip-ecosphere.eu/wp-content/uploads/2021/03/IIP-2021_001_IIP-

Ecosphere_Platform_Requirements_Usage_View.pdf

Link to the platform git-hub: https://github.com/iip-ecosphere/platform

Contact

Dr. Christian Sauer

sauer@sse.uni-hildesheim.de

https://www.iip-ecosphere.eu

@de_iipecosphere