

IIP-Ecosphere Whitepaper

IIP-ECOSPHERE PLATFORM HANDBOOK
Version 0.50

Holger Eichelberger, Amir Shayan Ahmadian,
Andreas Dewes, Marco Ehl, Ahmad Alamoush,
Monika Staciwa, Miguel Gómez Casado

White Paper IIP-2021/005

2
IIP-Ecosphere Platform Handbook

Disclaimer
The contents of this document has been prepared with great carefulness. Although the information
has been prepared with the greatest possible care, there is no claim to factual correctness,
completeness and/or timeliness of data; in particular, this publication cannot take into account the
specific circumstances of individual cases.

Any use is therefore the reader's own responsibility. Any liability is excluded. This document contains
material that is subject to the copyright of individual or multiple IIP-Ecosphere consortium parties. All
rights, including reproduction of parts, are held by the authors.

This document reflects only the views of the authors at the time of publication. The Federal Ministry
for Economic Affairs and Energy or the responsible project agency are not liable for the use of the
information contained herein.

Publication: March, 2023 on https://www.iip-ecosphere.eu/

DOI: 10.5281/zenodo.7695124

https://www.iip-ecosphere.eu/

IIP-Ecosphere Platform Handbook
3

Executive Summary

The IIP-Ecosphere platform is a central asset developed by the IIP-Ecosphere project. The core aim of
the platform is to research and demonstrate novel platform concepts for Industry 4.0, e.g., asset
administration shells as interfaces for software components and resources, unified edge deployment,
an AI toolkit or seamless configuration of a platform from network settings via services up to
applications running on the platform. This platform handbook provides insights into the rationales,
ideas and concepts that make up the design and the realization of the IIP-Ecosphere platform, ranging
from an overall layered architecture over a detailed discussion of the design and realization state of
each layer up to cross-cutting mechanisms such as the configuration model or the related code/artifact
generation.

This platform handbook addresses the technical side of the platform work in IIP-Ecosphere and builds
on the intensive prior work on requirements (usage view and functional/quality requirements of the
platform). This handbook shall provide means for deeper technical discussions with partners,
stakeholders and interested parties, but also allow for a technical understanding to contribute to the
platform, e.g., in terms of protocols, platform connectors, services or demonstration applications.

This version of the handbook focuses on the platform release as of March 2023 (version 0.5.0) and
supersedes older versions of this handbook/the platform.

Acknowledgements: We are grateful to Dr. Christian Sauer and Alexander Weber from the Software
Systems Engineering Group of the University of Hildesheim for cross-reading this document and
providing valuable feedback and ideas for improvement.

4
IIP-Ecosphere Platform Handbook

Contents
1 Introduction ... 7

1.1 Motivation and Goals .. 7

1.2 Interaction with other initiatives ... 8

1.3 Structure of the document .. 8

2 Tooling and Basic Technical Decisions... 10

3 Architecture ... 14

3.1 Overview .. 14

3.1.1 Relation to Reference Architectures ... 20

3.1.2 Stream (Data) Processing .. 21

3.1.3 Asset Administration Shells ... 22

3.1.4 Component Interaction Overview ... 23

3.1.5 Virtual Character of the Platform .. 26

3.2 Development Streams ... 26

3.3 Overall Requirements .. 27

3.4 UML Profiles .. 29

3.4.1 IIP-Ecosphere Profile ... 29

3.4.2 UMLSec Profile .. 34

3.4.3 Security and Privacy Profile ... 35

3.4.4 IoT Component Security and Privacy Profile ... 39

3.5 Support Layer .. 40

3.5.1 Asset Administration Shell Abstraction ... 40

3.5.2 Network Management Support .. 44

3.5.3 Lifecycle Support ... 45

3.5.4 System-level Monitoring Support ... 45

3.5.5 Identity Support ... 45

3.5.6 Resource Support .. 46

3.5.7 Semantic Id Resolution Support .. 46

3.5.8 Task Tracking Support ... 47

3.5.9 AAS Creation and Usage Pattern ... 47

3.6 Transport and Connection Layer ... 48

3.6.1 Requirements .. 48

3.6.2 Transport Component ... 49

3.6.3 Connectors Component .. 60

3.6.4 Requirements Discussion .. 68

3.7 Services Layer .. 70

3.7.1 Terminology and Background.. 71

IIP-Ecosphere Platform Handbook
5

3.7.2 Requirements .. 72

3.7.3 Service Environments .. 73

3.7.4 Service Control and Management ... 80

3.7.5 Requirements Discussion .. 87

3.8 Resources and Monitoring Layer ... 88

3.8.1 ECS runtime ... 88

3.8.2 Device/Resource Management ... 96

3.8.3 Monitoring ... 101

3.9 Storage, Security and Data Protection Layer .. 105

3.9.1 KODEX platform service... 106

3.9.2 Data lakes / Data bases ... 107

3.10 Reusable Intelligent Services Layer ... 109

3.10.1 Specific Requirements ... 109

3.10.2 Data Processing Function Library .. 111

3.10.3 RapidMiner RTSA service ... 111

3.10.4 Flower-based Federated Learning ... 112

3.10.5 Service candidates ahead .. 112

3.10.6 IIP-Ecosphere AI Software Service Concept .. 113

3.10.7 Requirements Discussion .. 113

3.11 Configuration Layer ... 114

3.12 Application Layer ... 122

3.13 Platform Server(s) .. 122

3.14 Management User Interface ... 125

3.15 Test support... 126

4 Architectural Constraints ... 128

5 Asset Administration Shells ... 130

6 Platform Configuration Model .. 134

6.1 Modeling Patterns ... 140

6.2 Configuration Model Structure ... 144

6.3 Support for Standardized Connectors/Protocols .. 145

6.4 Platform Instantiation Process .. 146

6.5 Container Instantiation ... 149

6.6 Example Applications .. 151

6.7 Creating an Application ... 154

6.8 Project Structures .. 155

6.9 Default Build Sequences .. 159

6.10 Service Realization Rules and Considerations ... 160

6
IIP-Ecosphere Platform Handbook

7 Platform Security and Data Protection ... 164

7.1 Internal Security and Security/Privacy Analysis .. 164

7.2 Support of the Concepts of the IoT Component Profile in actual Platforms 166

7.2.1 Using the Profile to annotate a system model with proper mechanisms 169

7.2.2 Towards an automated analysis to verify required security levels 169

7.3 External Security .. 173

8 Implementation ... 175

8.1 Implementation decisions ... 175

8.2 Obtaining the IIP-Ecosphere platform ... 178

8.3 Compiling the IIP-Ecosphere platform .. 183

8.4 Installing and using the IIP-Ecosphere platform ... 187

8.5 Pre-build Docker container images ... 191

8.6 Considerations for a Distributed Server Installation ... 192

8.7 Environment for Testing and Evaluating the Platform/Applications 193

9 How to apply, extend or contribute .. 197

9.1 Defining an own application-specific service .. 197

9.2 Defining an AAS for a device ... 197

9.3 Implementing a monitoring/alert data service ... 198

9.4 Extending the platform by adding a component or a platform service 198

9.5 Defining a new type in the configuration model ... 199

9.6 Using a different transport protocol ... 201

9.7 Observe or debug the data processing ... 201

9.8 Frequently Asked Questions (FAQ) ... 202

9.8.1 Error parsing HTTP header .. 202

9.8.2 Maven artifact missing .. 203

9.8.3 XXX has been compiled by a more recent version of the Java Runtime 203

9.8.4 Platform code cannot be setup in Eclipse, e.g., parent POM missing 203

9.8.5 Unknown platform coding conventions .. 203

9.8.6 Maven does not find app dependencies ... 204

9.8.7 Execution of application fails due to Java CompileError ... 204

9.8.8 Services do not start due to problems with javax.el.ExpressionFactory 204

9.8.9 Service execution through platform fails .. 205

9.8.10 Why do platform scripts always check for recent dependency snapshots 205

10 Summary & Conclusions .. 206

11 References ... 211

IIP-Ecosphere Platform Handbook
7

1 Introduction

1.1 Motivation and Goals
The digitalization of the industry increases the effectiveness of technical systems and related
processes, but also affects the complexity of the realizing (software) systems. Currently, several
approaches are developed in the fields of Internet-of-Things (IoT), Industrial Internet-of-Things (IIoT)
or „Industrie 4.0“ (I4.0)1. To support the industrial transformation towards IoT, IIoT and I4.0, several
software platforms were developed that provide different capabilities.

The vision of the BMWi-funded2 project IIP-Ecosphere is to enable innovations in the area of industrial
production based on connected, intelligent and autonomous systems in order to increase productivity,
flexibility, robustness and efficiency of IIoT and I4.0. IIP-Ecosphere aims at creating a novel ecosystem
for the “next level” of intelligent industrial production, not only for software-based systems, but also
for the people involved in this kind of systems, e.g., automation engineers, software developers, AI
experts, startups, venture capitalists, etc. On the software side, one core activity in IIP-Ecosphere is to
research and to realize a virtual platform that connects factory installations across companies in a
vendor-independent manner. In particular, the platform shall provide easy-to-use access to Artificial
Intelligence (AI) in secure and flexible manner.

Towards the design of such a platform, we analyzed in [35] 21 IIoT platforms with specific relevance to
IIP-Ecosphere and described in [41, 13] the requirements for the IIP-Ecosphere platform from two
different perspectives, namely the usage view and the functional/quality requirements view. The next
step is to turn the requirements into an architecture and to implement the platform. The resulting
platform shall be open, extensible, vendor-neutral, secure, flexible, configurable, self-adaptive and
based on relevant standards as well as on existing Open Source components. In particular, we aim at
developing a virtual platform, i.e., a platform that utilizes existing, already installed solutions by
integrating with them, using accessible output and resources, enhancing them with AI and, if desired,
feeding back AI-enhanced information into utilized systems. Thus, we do not aim at replacing existing
platforms as those mentioned in [35] rather than enhancing them. Moreover, we aim at demonstrating
how research results, e.g., from systematic variability management, security or data protection, can
lead to platform concepts that are currently rarely used in IIoT/I4.0 platforms. Besides the desirable
abilities mentioned above, following the initial decisions made in [41, 13], the platform shall be service-
based and virtualized through containers. One relevant I4.0 standard to integrate the parts and pieces
of the platform is the Asset Administration Shell (AAS) [32] that we aim to apply as self-description
and interface to software components across all platform layers. The consortium discussions regarding
a vision of the IIP-Ecosphere platform also emphasized the need to directly communicate with
production machines, in particular, to utilize edge devices and, if feasible, cloud technology (such as
the upcoming Gaia-X3). This re-shaped the character of the envisioned platform from a purely virtual
to a mixed-virtual platform with stronger aspects of a usual IIoT/I4.0 platform, in particular providing
uniform deployment of services to heterogeneous execution resources such as edge devices, on-
premise servers or clouds.

In this whitepaper, we aim at discussing and documenting the architecture and the implementation of
the IIP-Ecosphere platform. This happens in an incremental4 fashion as, we intentionally mix
requirements, architecture and implementation activities in an agile manner. With this approach, we
aim at synchronizing the requirements with the architecture and ensuring that the underlying

1 Translates to some degree to IIoT in German-speaking areas in Europe, partly based on own standards.
2 https://www.bmwi.de/Redaktion/DE/Publikationen/Technologie/ki-innovationswettbewerb.html
3 https://data-infrastructure.eu
4 Along the realization state, i.e. the releases of the platform software. The version number of this white paper
reflects the software release version. Thus, at the beginning some sections may be rather empty.

https://www.bmwi.de/Redaktion/DE/Publikationen/Technologie/ki-innovationswettbewerb.html
https://data-infrastructure.eu/

8
IIP-Ecosphere Platform Handbook

implementation realizes and fits the architecture. Thus, this document documents the current state at
hands, while we aim at updating this document as part of upcoming releases of the IIP-Ecosphere
platform. In other words, in this document, we document and discuss the current state of the platform
on a feasible level of detail, the underlying implementation, decisions we made and the tradeoffs that
we faced. However, depending on the state of the implementation, this document is not meant to be
complete but rather to be a “living document” that is updated incrementally. This version of the
handbook focuses on the platform release as of March 2023 (version 0.5.0) and supersedes older
versions of this handbook/the platform.

This release of the IIP-Ecosphere platform adds the technical prerequisites for the integration of
federated learning, automatic creation of platform/application containers, a distributed
test/evaluation environment for the platform and applications running on the platform, the
automated translation and integration of OPC UA companion specs into the configuration model, LXC
as alternative container manager, an integrated build and installation process for applications and the
platform (as inspired by a service development workshop), an upgrade to BaSyx 1.3.0 and many more
detailed features and improvements5. Further, an initial video tutorial on service development for the
platform based on a project-internal workshop have ben created and published6.

It is important to mention that this document is also meant to be a basis for discussions with the
respective teams in IIP-Ecosphere7 (mainly Think Tank “Platforms” and KI-Accelerator) and with all
kinds of platform stakeholders in order to help, improve, influence or integrate with development of
the IIP-Ecosphere platform. So far, it helped to onboard various co-workers and stimulated detail
decisions and clarifications.

1.2 Interaction with other initiatives
Work on the IIP-Ecosphere platform is influenced by interaction with other initiatives, in particular

• The IIP-Ecosphere IIoT platform overview [35] indicating challenges and potential for future
AI-based I4.0 platforms.

• Interactions with other funded projects: DaPro8, BaSys9, FabOs10, Service-Meister11.
• Internal IIP-Ecosphere stakeholders with interest in validating the platform (in conjunction

with their own approaches) or for contributing components, e.g., dedicated services. In the
remainder of the funded time of IIP-Ecosphere, the “AI accelerator” work package plans to
make contributions in terms of customizable (AI) services. First steps in this direction have
been done, e.g., in terms of feasibility studies with the IIP-Ecosphere demonstrators or a
collection of candidate services for generalization.

1.3 Structure of the document
A typical first section of a platform handbook could be a summary of the requirements to be realized.
As stated in Section 1, the IIP-Ecosphere team summarized the results of the requirements collection
for the platform in two other whitepapers, namely the usage view [41] and the functional/quality
requirements view [13]. For pragmatic reasons, these two documents have been prepared partially
before and partially while designing the platform architecture, so that they are synchronized with the

5 https://github.com/iip-ecosphere/platform/blob/main/platform/documentation/RELEASES.md
6 https://www.iip-ecosphere.de/angebote/plattform/ and
https://www.youtube.com/playlist?list=PL5VSYtiD_PfdxUDXGlX53UsHdQlXcHYK7
7 See https://www.iip-ecosphere.eu/ for a summary of the project structure.
8 http://dapro-projekt.de/
9 https://www.basys40.de/
10 https://www.fab-os.org/
11 https://www.servicemeister.org/

https://github.com/iip-ecosphere/platform/blob/main/platform/documentation/RELEASES.md
https://www.iip-ecosphere.de/angebote/plattform/
https://www.youtube.com/playlist?list=PL5VSYtiD_PfdxUDXGlX53UsHdQlXcHYK7
https://www.iip-ecosphere.eu/
http://dapro-projekt.de/
https://www.basys40.de/
https://www.fab-os.org/
https://www.servicemeister.org/

IIP-Ecosphere Platform Handbook
9

work described here. In order to avoid inconsistencies, we are not repeating the requirements in this
document rather than referring to [41, 13] through requirements identifiers defined there.

In Section 2 we introduce the tooling that is used for developing the architecture model and the
implementation. A brief discussion of the tooling and the rationales for certain decisions is relevant at
that point as the decisions significantly interact with the modeling concepts, i.e., affect the set of
concepts that we practically can use for specifying, describing or realizing the architecture. Moreover,
Section 2 already indicates that the ultimate outcome of our work is not “just” an architecture rather
than an implemented and working platform.

In Section 3 we introduce and discuss the architecture of the IIP-Ecosphere platform, ranging from the
UML profiles used, over the lower transport up to user-defined applications. This section is not only
intended to present the architecture as it was designed rather than also the tradeoffs that we faced
and the decisions that we made towards the actual architecture. In Section 4, we summarize
architectural constraints that must be obeyed by the implementation. In Section 5, we discuss the
representation of the platform components in terms of Asset Administration Shells, which are used as
a uniform way to represent interfaces and communication among components.

One aim of the platform work in IIP-Ecosphere is to research concepts on systematically and
consistently configuring such a platform, ranging from network settings over available resources or
services up to the wiring of re-usable parts and pieces to IIoT-applications. In Section 6, we elaborate
the structure of and the concepts of the model to specify decisions that must be made to turn
alternative or generic components into an installable platform with user-defined applications. We will
also discuss, how to utilize such a model, not only to validate configuration decisions, but, in particular,
to automatically generate platform instances, artifacts or glue code as one means of supporting
platform users to create IIoT-applications.

In Section 7, we discuss mechanisms ensuring the security of the platform. In Section 8, we detail how
to obtain, install, instantiate and use (depending on the implementation state) the IIP-Ecosphere
platform. In Section 9 we summarize steps on how to extend, contribute to or use the IIP-Ecosphere
platform.

In particular for Sections 3 to 9 it is important to recall that the IIP-Ecosphere platform is currently
under agile and incremental development, i.e., while some sections are detailed and an
implementation is provided for the respective components, other components are still in planning and
not yet realized. The design and implementation state will change and evolve over time as the
architecture and the implementation will do. To detail the respective realization state, we will refer to
the requirements in terms of realized, modified or, if needed, even deferred or excluded requirements.

Ultimately, in Section 10 we will summarize and conclude this document. In Section 11 we list
references to other work that we rely on.

10
IIP-Ecosphere Platform Handbook

2 Tooling and Basic Technical Decisions
Tooling is an important topic when creating an architecture and when implementing it in terms of
executable code. In this section, we briefly describe the tooling decisions made by the involved
partners, as they affect the available options for modeling the architecture and for realizing it.

The architecture is designed using the Unified Modeling Language (UML) [30]. We will not introduce
UML in this document rather than assuming that the reader is sufficiently familiar with UML. As tool
support, we use Eclipse Papyrus12. While there is a broad range of modeling tools available, in
particular commercial ones, we decided to use Papyrus for two major reasons:

1) During architecture modeling concepts for security and data privacy shall already be integrated
and the architecture shall be evaluated in this direction. Therefore, we will use UMLsec [24] as
well as a specific security profile developed for IIP-Ecosphere. UMLsec has been successfully
applied with Papyrus and with the Eclipse UML modeling tools, advocating Papyrus/Eclipse as
a natural choice for our work. For applying the security concepts, the respective UML profiles
must be installed and integrated into the model. For an automated security analysis, the
additional Eclipse-based CARiSMA13 tool must be installed.

2) In contrast to commercial software, Papyrus is available to the interested public as it is
released as Open Source. This facilitates platform work, as we plan to release the UML model
of the IIP-Ecosphere platform as part of one of the platform releases. Moreover, as it is based
on Eclipse, further available tools and model translations from the Eclipse ecosystem may be
utilized.

Although Papyrus offers various UML modeling capabilities, in particular the behavioral modeling for
state machines, sequence or communication diagrams are currently not completely stable. This,
however, affects the available options and concepts for modeling the platform architecture. Thus, in
some cases, more recent modeling concepts could have been used that are not available for this
reason. Unfortunately, the realization state of Papyrus also affects the layout of the included diagrams,
e.g., if technical screen resolutions change, which could be presented in more pleasing manner if only
some more diagramming functionality would be available. This is also true for the Papyrus diagram
export, which so far produces only formats (bitmap, SVG) that unfortunately can only hardly (or with
some inconvenient transformation steps) be used with Microsoft Word. Thus, we include UML figures
taken from the architecture model as bitmaps into this document.

Along with the architecture and the design of individual components, also architectural constraints
arise, e.g., that in particular for alternative components, dependencies to underlying libraries must be
private to the respective platform component, i.e., and globally used by other platform components.
We will discuss the architectural constraints of the IIP-Ecosphere platform in Section 4 as a specific
summary of the architecture section. Section 3 may already indicate or mention such constraints.

For implementing the architecture, we must integrate existing components and consider that in
particular AI services will be realized in different programming languages.

• For the Java components, we rely on Eclipse (so far 2021-03, version 4.19.0) with Maven14
(version 3.6.3), Git15 and checkstyle16 (version 8.40) integrations. Fundamental technical
decisions are documented along with the code. As we use Maven for the platform installation,

12 https://www.eclipse.org/papyrus/ version 4.8
13 https://rgse.uni-koblenz.de/carisma/
14 https://maven.apache.org/ also tested with 3.8.5
15 https://git-scm.com/
16 https://checkstyle.sourceforge.io/ known working versions are 8.35 up to 8.41

https://www.eclipse.org/papyrus/
https://rgse.uni-koblenz.de/carisma/
https://maven.apache.org/
https://git-scm.com/
https://checkstyle.sourceforge.io/

IIP-Ecosphere Platform Handbook
11

a Java Development Kit (JDK) is required rather than a Java Runtime Environment (JRE). We
just mention some of the decisions here: The dependency management and the build process
are specified in Maven. Templates for code formatting and validation of the formatting are
available for checkstyle in the source code repository as part of the Eclipse project for managed
platform dependencies and shall be applied prior to any commit. A common logging
framework was selected (slf4j) based on decisions of components to be integrated.
Components of the IIP-Ecosphere platform are represented as individual Eclipse projects. For
compliance with yet unknown edge devices, we required until version 0.4 that (at least the
lower, edge-related) layers are executable with Java 1.8 (as this is also the case for many
available IoT libraries). Due to recent decisions of the AAS reference implementation BaSyx to
provide binary components for Java 11 (as well as test broker implementations also switching
to or requiring Java 11), we decided to abandon the original Java 1.8 requirement in version
0.5 of the IIP-Ecosphere platform and to rely on Java 11 as minimum/build Java version. For
the continuous integration, the build/deployment process is specified due to technical reasons
in ANT and for platform examples partially as Bash shell scripts.

• While some AI methods may also be realized in Java, nowadays AI methods are frequently
implemented based on Python. For Python services (as for Java-based services), a service
execution environment is provided, which is responsible for the communication with related
Java components, so that an AI developer does not have to work with both languages, protocol
details or a plethora of different protocols. For the service environment, we rely on Python
3.9.617, a rather recent version as modern AI frameworks often also require a recent Python
version. Python services musts explicitly declare their dependencies, e.g., used AI frameworks
and state this information in the platform configuration for automated creation of installation
artifacts, in particular containers.

• In particular, for the initial versions of the platform, we prioritize dependency reduction and
binary image size over alternative, potentially more modern programming approaches. With
this decision, we also try to reduce the risk of incompatible libraries for platform components
that still need to be integrated. Thus, we decided not to use a basic framework like Spring as
foundation as it may leads to later conflicts (as we experienced later for Spring Cloud Stream
and the AAS reference implementation Eclipse BaSyx). Akin, we prefer in some places
boilerplate code over annotation-style programming, e.g., in platform parts where a later
revision with yet unclear external decisions can be foreseen (standardization of AAS, future
development of BaSyx).

• Some components require technical settings for their startup, e.g., certain internet addresses
or basic security certificates to announce the own instance, to request or contribute
information. The aim is to reduce such explicit setup information to a minimum as it is a source
for inconsistencies. For this purpose, such information shall be managed centrally, instantiated
into binary components or distributed via discovery protocols where feasible. So far, as
alternative, no automated discovery mechanisms (for I4.0) settings was suggested/integrated,
which could ease the setup. Further information not required to startup a component shall be
made available via the (joint) AAS of the platform. Technical settings that may be subject to
modifications by administrators shall be represented in a uniform and human readable
manner. For stored setup information we rely on Yaml18, for machine-readable complex data
in AAS on JSON19. Regarding terminology, we distinguish between Setup (the technical
information, e.g., in Yaml, in practice often also called configuration) and the Configuration

17 Python 3.8 does not support the automatic class loading employed by the platform.
18 https://en.wikipedia.org/wiki/YAML
19 https://www.json.org/json-en.html

https://en.wikipedia.org/wiki/YAML
https://www.json.org/json-en.html

12
IIP-Ecosphere Platform Handbook

(the managing part, potentially generating the setup information for consistency). Related
source code shall be named accordingly20.

• Components shall internally communicate via interfaces in order to reduce (accidental)
dependencies. Alternative and optional components shall be realized as a kind of plugin and
register themselves into the platform. On the Java side, we rely on the Java Service Loader
(JSL) mechanism, which associates concrete implementations to their respective (descriptor)
interfaces. The relation happens through a specific form of file that is evaluated by the JSL
mechanism upon request. We use that mechanism to define, e.g., factory instances, to
compose AAS but also to set up the component lifecycle, e.g., to handle the start and shutdown
process.

• So far, no mechanisms to shield (the dependencies) of individual platforms against each other
was necessary, as, e.g., technical dependency conflicts could be successfully resolved through
global version restrictions. However, we are aware of the fact that in particular though external
contributions, conflicts may arise that cannot be solved in this manner. Thus, for future
releases, we plan to investigate, whether approaches like OSGi (Open Services Gateway
Initiative) could help to avoid unintended or unexpected conflicts.

• All components shall provide sufficient tests for their functionality. Tests shall be executed
during the continuous integration (CI) of the platform and also usual test metrics shall be
recorded. Test artifacts, e.g., setup files created specifically for testing components or
dependencies used only for testing, must be strictly separated from production code, e.g.,
reside only in test resource folders. In particular for Java components this is important as setup
files that are accidentally placed in production resource folders may take precedence on the
classpath over generated setup folders, i.e., prevent that the configuration decisions made by
the user are enacted.

As stated in Section 1, for several reasons one objective of the IIP-Ecosphere platform is to use existing
Open Source solutions wherever feasible. However, not all Open Source licenses are per se permissible
in industrial contexts. Therefore, the IIP-Ecosphere consortium has reviewed Open Source licenses and
categorized them into four categories:

1) Usable without limitations, e.g., MIT, BSD-2-Clause, BSD-3-Clause, ISC, CDDL1.0,
Eclipse-Dist-1.0.

2) Permissible, but potentially problematic, e.g., Apache 2.0, LGPL-2.1, Artistic-1.0-Perl, EPL-2.0,
MS-PL, MPL-1.1.

3) Commercial licenses.
4) Not allowed or at least problematic, in particular due to copy-left implications, e.g., GPL-2.0,

GPL-3.0, EPL-1.0, AGPL-3.0. In some cases, the use of binary artifacts of software under such
licenses may still be permitted as long as license information and the origin are stated and the
underlying code is not modified or included.

These categories shall be considered already during the design of the IIP-Ecosphere platform and may
effectively limit potential candidates. Licenses of the first two categories may be used (with care), the
remaining shall be avoided. This is in particular true for platform components that constitute
mandatory core functionalities of the platform. Commercial licenses may be used depending on the
decision of the installing organization. Components relying on commercial licenses shall be optional by

20 Initially, we aimed for an alignment with Spring, also calling the technical setups a “configuration”. However,
this led to some confusion, so we decided for version 0.3.0 to refactor the platform code according to the
setup/configuration naming convention introduced above. However, some parameter/variable names and
comments may still use configuration, config or cfg where setup would now be correct. We will try to clean up
these (local) inconsistencies incrementally over the time.

IIP-Ecosphere Platform Handbook
13

default and, thus, their use is the decision of the using organization. Analogously, also software under
not permissible licenses could be used in optional parts of the platform, but to avoid later license
conflicts, licenses of category 4 shall be avoided wherever possible.

The source code of the IIP-Ecosphere platform is made publicly available in the GitHub space of IIP-
Ecosphere21. Moreover, to foster transparency, the development of the IIP-Ecosphere platform
happens in public. In later stages also the underlying architecture model shall be made available to
support external and future developments after the project lifetime. As far as possible, components
are subject to CI using the Jenkins server of the Software Systems Engineering (SSE) group at the
University of Hildesheim. Upon successful builds, artifact snapshots are deployed by the CI processes
to the Maven repository22 of the SSE group. Java parts of stable releases are deployed to Maven
central23.

21 https://github.com/iip-ecosphere/platform/
22 https://projects.sse.uni-hildesheim.de/qm/maven/
23 E.g., https://repo1.maven.org/maven2/de/iip-ecosphere/platform/,
https://search.maven.org/artifact/de.iip-ecosphere.platform/transport

https://github.com/iip-ecosphere/platform/
https://projects.sse.uni-hildesheim.de/qm/maven/
https://repo1.maven.org/maven2/de/iip-ecosphere/platform/
https://search.maven.org/artifact/de.iip-ecosphere.platform/transport

14
IIP-Ecosphere Platform Handbook

3 Architecture
The architecture of the IIP-Ecosphere platform aims at realizing the requirements collected in the
project [41, 13] in terms of software. In this section, we discuss the design of the individual parts and
components of the platform. Please note that as mentioned in Section 1, we follow a pragmatic agile
approach to the development of the platform, which involves forward and feedback cycles among
requirements, architecture and implementation. Thus, depending on the realization state, not all
platform components may be completely described in this version of the document, i.e., we will work
out sections incrementally depending on the realization state.

We start in Section 3.1 with an overview of the platform layers and dive then into their details. At the
end of Section 3.1, we detail some further basic aspects, namely relation to reference architectures in
Section 3.1.1, the concept of data flow processing in Section 3.1.2, a brief introduction into asset
administration shells in Section 3.1.3, high-level component interactions in Section 3.1.4, and the
virtual character of the platform in Section 3.1.5. Section 3.2 indicates the coarse-grained development
streams. Section 3.3 takes up the general requirements from [13] as context for the platform
architecture. As basis for the architecture description, we discuss in Section 3.4 the used UML profiles
and go through the layers of the infrastructure, first as overview and then one section per layer,
starting at the bottommost layer.

3.1 Overview
The overall architecture of the IIP-Ecosphere platform follows a layered style (see Figure 2 with only
high-level relations shown) based on components and services (R4 in [13]). As far as feasible, we aim
for a strict (logical) layering, so that for two adjacent layers ll and lu (with as “the lower layer” ll being
located below “the upper layer” lu), only lu (and not its transitive upper layers) shall access or call ll
directly. Moreover, there are also aspects that cross-cut visibly or invisibly in this layered structure.

Figure 1: Main platform components as block diagram.

Figure 1 depicts an overview of the high-level building blocks of the IIP-Ecosphere platform. The overall
goal is to enable service-based AI-enabled applications to be deployed to available resources utilizing
standardized protocols. Therefore, the platform encompasses on the two lower layers (middle of
Figure 1) the platform-internal data transport, connectors to external data, e.g., to machines, basic
service interfaces, resource abstraction and monitoring facilities. These two layers form the basis for

Edge, Cloud, Server Platform

Transport and Connectors

AI-Toolkit

SCADA, ES, Visualization, Data exploration

Data
integration

Deployment
UnitAI Ano

IDS/EPS

AI
Deploy-

ment
Monitoring /

AdaptionConfiguration

StoreSecure Store Security, data protection, data sharing Ano

Apps

Co
nf

ig
ur

at
io

n
m

od
el

Management-UI

EPS-Server, International
Data Spaces

… Deployable service

Ext

… External component

AAS

Service Interfaces, Resources, Monitoring

IIP-Ecosphere Platform Handbook
15

units that can be deployed to edges, servers or to a cloud. The remaining layers add services, e.g., on
data protection, data integration, AI, runtime adaptation/centralized monitoring, overall configuration
and deployment of services/containers. If permitted, services from those layers can be deployed to
available resources by the platform. In contrast, Figure 2 focuses on the software side and the actual
layering.

• Asset Administration Shells (R7, [32]) are used in the IIP-Ecosphere platform in two forms: On
the one side, AAS represent assets created by different vendors (e.g., a machine, an edge
device, an already installed platform, a certain service, a storage mechanism or an App
composed of services). The respective AAS may be provided by a third party. Also, the platform
itself forms such an asset that deserves an own AAS. On the other side, we utilize the
mechanisms of AAS also for describing interfaces of individual interacting components within
the platform, but also for realizing this interaction. These components may be internal or
external, i.e., also interfaces provided by external AAS may be used. In particular, AAS
(submodels) for internal components may be created for the purpose of internal
communication rather than external component realization and, thus, may not follow official
standardized formats24. For the realization, we rely on the “reference implementation”
BaSyx25. An integration of AAS as well as support for realizing (internal) Asset Administration
Shells in IIP-Ecosphere style will form the bottom-most layer of the platform.

• The platform contains an event-based transport messaging mechanism, e.g., a Broker, so
that components and services can communicate among each other independent of the
layering. Although this implies certain degrees of freedom and may be used to bypass R7 in
exceptional cases, the event-based messaging shall not happen in an ad-hoc or chaotic manner
undermining the layer structure. Further, uncontrolled messaging may accidentally overload
the broker(s), in particular if the broker is involved in the processing of soft-realtime data
streams (one potential manifestation of R10 [13]). As event-based communication and data
streaming are essential to the platform, they occur on one of the fundamental layers
(Transport) utilizing the external (abstract) components Broker and StreamingLibrary.

• Variability management and consistent configuration typically do also cross-cut layers, as
variability instantiations may affect all components. This is already reflected in the
requirements, where configuration model occurs in many different functional topics, see e.g.,
also for implicit information R8, R19f, R20, R28, R30, R31, R34, R40-R43, R62, R64, R73, R77,
R80, R86, R89, R93-R101, R104, R107, R112, R119-R122, R131, R134 in [13], but also in the
(variability-based) configuration model that crosses several building blocks/components in
Figure 1 and Figure 2. Moreover, some layers require access to the configuration, in particular
at runtime, e.g., to determine whether migrations of components are needed or how
adaptations shall be enacted. However, also here a chaotic use of the configuration can easily
lead to unmanageable dependencies. Therefore, we modularize the configuration along the
layers (as indicated in Figure 2), and, if required, provide access to the individual configuration
modules. Similarly, only some few selected mechanisms to instantiate variability shall be
utilized, in particular code generation, generation of setup files and artifact selection while
packaging.

For short, the layers of the platform from bottom to top:

24 At the point of writing, several forms of AAS are in standardization, but most known to us do not aim at
platform components. Wherever possible, we utilize existing standards, e.g., for device nameplates, or try to
adopt the style of related standards to express proto-AAS, e.g., for software services.
25 https://www.eclipse.org/basyx/

https://www.eclipse.org/basyx/

16
IIP-Ecosphere Platform Handbook

• Support Layer: The support layer (not shown in Figure 1) realizes basic abstractions and helpful
functions for the upper layers of the platform. The core aim is to reduce repetitions of non-
trivial management functions or functions to create common AAS structures and to foster
internal conventions, e.g., how to represent certain information in AAS. Moreover, it contains
an abstraction of the underlying AAS implementation, serving for both, more flexibility
(allowing to also use other implementations) and risk reduction.

Figure 2: Layered platform overview with indicating only relevant high-level relationships26.

26 Colors indicate the realization state and element categories. Green components indicate AAS components,
turquoise layers/components are actually realized (at least in an initial version), red parts are so far not realized

IIP-Ecosphere Platform Handbook
17

• Transport and Connectors Layer: This layer is responsible for connecting devices among each
other and with platform services using appropriate protocols and formats from the I4.0
domain. However, several protocols and formats impose different tradeoffs in functionality,
performance, security and legal/normative impact. This layer integrates such protocols in a
flexible manner. The role of the Transport Component is to abstract over relevant protocols
such as MQTT27, AMQP28, or OPC UA pub/sub29 to integrate the abstraction with the
technology used for streaming (StreamingLibrary) and to provide an environment for
protocol/format connectors. In contrast to recent platforms [35], where a single fixed
transport protocol is not uncommon, we want to avoid making such basic decisions on behalf
of the user already on this layer. Further, for the streaming technology several candidate
approaches with their tradeoffs are known. The idea is to prepare a flexible integration and to
link this decision to the selected transport protocol. Similarly, connections to production
machines and already installed platforms are abstracted by the Connectors Component. Such
a Connector may utilize similar protocols as the Transport Component, but also protocols at
higher semantic levels such as OPC UA providing an own information model shall be made
available. In contrast to the Transport Component, which passes through given data, here only
subsets of the data being available to a connector may be ingested in the platform and
information/commands originating from the platform may be transported back, e.g., to
reconfigure an underlying machine. The Connectors may optionally include functionality of
the International Data Spaces (IDS)30 for secure access to data.

• Services Layer: Openness and extensibility through services of different kinds, in particular AI
services, are at the heart of the IIP-Ecosphere platform. To be useful for an application, services
must be parameterized and orchestrated, e.g., their data (streams) must be connected to
other services or connectors. While the interconnections will be handled by the Transport and
Connectors Layer, the Services Layer defines the basic service interfaces (Services) as well
as the services execution environments, e.g., for Java and Python. Services may be realized in
different programming languages and, thus, demand different integration capabilities, ranging
from direct calls (Java services) to operating system processes (Python services in an IIP-
Ecosphere execution environment, GO, or even standalone Java programs). Therefore, this
layer also encompasses service environments for the specific languages or basic, re-usable
integration components.

• Resources and Monitoring Layer: To become effective, services must be deployed to
resources/devices (in terms of a Deployment Unit) and monitored at runtime. In IIP-
Ecosphere, deployment targets such as edge devices shall describe themselves in terms of AAS
and perform a registration with the device registry (Devices), which reflects its data into the
runtime structures of the platform. For deployment, the Deployment Unit (more precisely,
the ECS runtime from [41]) receives commands via its AAS from the platform, downloads a
container including the service implementations31 and starts the container. Also the execution
of the services in the container must be monitored, which may involve reusable monitoring
probes provided by the platform as well as application-specific probes. The reusable
mechanisms are provided by the Monitoring component, which (in terms of probes and

and may finally even be omitted (e.g., functions of semantic mapping and routing are already taken over by
other components) and orange parts are currently in realization.
27 https://mqtt.org/
28 https://www.amqp.org/
29 https://opcfoundation.org/news/press-releases/opc-foundation-announces-opc-ua-pubsub-release-
important-extension-opc-ua-communication-platform/
30 https://www.internationaldataspaces.org/
31 Assembling the containers is managed by the Configuration Layer as described below.

https://mqtt.org/
https://www.amqp.org/
https://opcfoundation.org/news/press-releases/opc-foundation-announces-opc-ua-pubsub-release-important-extension-opc-ua-communication-platform/
https://opcfoundation.org/news/press-releases/opc-foundation-announces-opc-ua-pubsub-release-important-extension-opc-ua-communication-platform/
https://www.internationaldataspaces.org/

18
IIP-Ecosphere Platform Handbook

signaling) is part of the service environment while the aggregation of the monitoring data
happens on central IT level. The Monitoring component also uses the capabilities of the
support layer (monitoring in terms of AAS) and the Transport and Connection layer (fast
track signaling, alarms) and may issue alerts in generic as well as application-specific manner
to further layers.

• Storage, Security and Data Protection Layer: Security and data protection in the IIP-Ecosphere
platform encompass of two parts, 1) cross-cutting mechanisms that can be used to implement
security and data protection in any component, e.g., authentication, and 2) centralized or
distributable mechanisms to support security and data protection, e.g., services supporting
data protection or data storage. While the cross-cutting mechanisms occur in all layers
(directly or indirectly controlled through the platform configuration), this layer primarily
focuses on the second part. Thus, it provides access to the overall security configuration, e.g.,
authentication tokens or cryptographic keys for accessing edge devices. Further, this layer
realizes components (optionally) enhancing the security and data protection, e.g., stream-
based services for Anonymization and Pseudonymization, external (Cloud)
communication connectors and (optionally secure) Data Lakes. Data lakes/stores/databases
may be distributable components to be packed into deployment units, e.g., to buffer data on
edge devices.

• Reusable Intelligent Services Layer: The components described so far (as well as not
mentioned administrative services provided by the platforms) can be used to develop simple
applications similar to existing platforms [35]. This layer shall pave the way for open, extensible
and reusable intelligent services. The Data Integration collects data from running services
(as defined during the orchestration) and integrates the data with additional information such
as floor plans, order data etc. The integrated information may be stored in storages provided
by the Data Lake component(s). The actual functionality of this component in the context of
a running application is also defined in the platform configuration. Finally, the AI-Toolbox
shall contain re-usable AI services that can be parameterized and orchestrated to form a
running application. Basic functionality for this layer is part of this release, e.g., the Python
service environment or an optional integration of the RapidMiner Real Time Scoring Agent
(RTSA) as generic, re-usable AI service.

• Configuration Layer: The configuration layer contains components to manage the platform
configuration. The Configuration component is responsible for composing reusable and
application-specific services and representing the information in terms of the application
specific-modules of the platform configuration. The Deployment component is responsible
for deciding which services shall be executed by which device (e.g., edge, server or cloud)
depending on runtime information available in the platform configuration. Based on these
decisions and device-specific information provided by a device AAS, deployment containers
are created automatically and made available. Furthermore, the Deployment component
shall take the dynamic state of the platform reflected in the platform configuration into
account to optimize the container/service deployment at runtime, e.g., supported by
generated service glue code or dynamic re-routing of data by the Transport and Connection
Layer or the Streaming Library. In addition, the Adaptation component is responsible
to decide about configuration changes to deployed services as well as selection of alternative
services at runtime (supported by similar mechanisms as for runtime deployment adaptation).

• Applications Layer: Applications are described by configuration modules and may ship with
application-specific components, e.g., AI services or monitoring probes. Although not visible
here, glue or transport code generated for orchestrated services implicitly belongs to the
applications. The execution of the applications shall be visualized by (as far as feasible) generic

IIP-Ecosphere Platform Handbook
19

Dashboard components. Further, external AAS-based access to selected aggregated
information of the platform can be made available through secure mechanisms, e.g., IDS.

• Management User Interface: Ultimately, a (simple) platform Web user management interface
(UI)32 relying in particular on components of the Configuration layer, the AAS of the
platform as information sources as well as AI-enabled applications run on top of the platform.
It is important to emphasize, that although the management interface is realized as a Web UI,
the platform must not necessarily be installed/deployed in a Web/Cloud setting, i.e., on-
premise installation and use of the Web UI via a browser is one important installation
alternative for the IIP-Ecosphere platform.

International Data Spaces (IDS) [22] is a virtual data space leveraging various standards, technologies,
and governance models to enable secure and standardized data exchange in a trusted environment.
IDS offers a decentralized data storage where several companies share data through IDS Connectors.
Moreover, IDS allows to deploy various internal and external applications into the IDS Connectors in
order to provide various services on top of data exchange processes. Furthermore, IDS introduces a
so-called security profile indicating the capabilities of a Connector to maintain this secure and trusted.
As discussed above, security is usually cross-cutting, i.e., while individual mechanisms may enhance or
wrap IIP-Ecosphere platform connectors, e.g., to act as IDS connectors, other mechanisms may be
more on the central side, such as an integration with the IDS data storage.

Gaia-X33 aims to form data spaces for companies and citizens to collate and share data in a way that
the users can keep control over them. In particular, the users shall decide what happens to their data,
where it is stored, and always retain data sovereignty. The architecture of Gaia-X is based on the
principle of decentralisation and integrates a multitude of individual platforms that all follow a
common standard.

An IIP-Ecosphere installation may interface with both, IDS and Gaia-X, one of them or even none of
them as desired by the user, e.g., to remove respective connectors and components completely from
the individual platform instance upon platform instantiation, if they are not desired. For access and
privacy protection, the IIP-Ecosphere platform may employ also different approaches, e.g., a privacy
shield like the KIPROTECT Endpoint System (EPS)34.

The full stack shown in Figure 2 is not required for all kinds of installations. E.g., on a resource such as
an edge device, a cloud or a server, a specialized runtime is needed (ECS runtime from [41]) to take
control over containers and services. The ECS runtime can be composed from a subset of the layers as
indicated in Figure 3. The basic layers such as Support as well as Transport and Connectors must be
present (from the Support Layer also mechanisms for dynamic network management). For managing
containers, at least the deployment unit from the Resources and Monitoring Layer is needed. However,
the Services Layer is optional for an ECS runtime, at least in the same container. If an ECS runtime
installation also ships with all dependencies needed to run the configured services (e.g., Python and AI
libraries), then it might make sense to also have the service manager from the Services Layer present.
Otherwise, the Services Layer shall optionally be executable in an own container, based on the Support
as well as Transport and Connectors Layers. This container would then be under the control of the ECS
runtime, i.e., the local Resources and Monitoring Layer.

32 As discussed in [13], user interface and dashboards are formally out of scope of our funding contract.
However, if feasible, we plan to realize at least a simple (Web) user interface in one of the next releases.
33 https://www.data-infrastructure.eu/
34 https://github.com/kiprotect/eps

https://www.data-infrastructure.eu/
https://github.com/kiprotect/eps

20
IIP-Ecosphere Platform Handbook

Figure 3: Layers and components required to build an ECS runtime.

The Java 1.8 restriction stated in Section 2 applies in particular to the layers shown in Figure 3 in order
to enable compliance with unknown edge devices. Although execution on edge devices shall be
virtualized in terms of containers (see [13], in particular R30), it may also be required in some settings
that the ECS runtime is directly executed by a Java virtual machine on the edge device. As far as we
could see at the point in time when designing the architecture of the IIP-Ecosphere platform, this is no
significant limitation as relevant (client) libraries for AAS, IoT protocols or connectors or data streaming
can be used there. However, we are also aware of the fact that in particular for testing further (broker)
libraries may be required, where e.g., the restriction to Java 1.8 may not be fulfilled. This can be
mitigated to some degree, as in an installation also equivalent functionality in terms of native programs
or other programming languages are available and may be used. As also stated in Section 2, this
constraint may be relaxed for the remaining layers shown in Figure 1.

3.1.1 Relation to Reference Architectures
IIP-Ecosphere aims at interrelating and adhering to reference architectures such as RAMI 4.0 [33].
Although we use an own naming of the platform layers, they map nonetheless to layers defined by
RAMI 4.0 as summarized in Table 1. However, it is important to recall that the IIP-Ecosphere platform
shall be a virtual platform, i.e., it shall in particular (be able to) build on existing installations without
implementing a complete IIoT platform. Thus, it is not relevant to meticulously adhere to all RAMI
levels, in particular not to the lower levels targeting field devices (as already scoped out in [41, 13]). In
addition, our architecture includes some (crosscutting) layers that do not directly fit into the picture of
RAMI35, but are important to operations, research and contributions of IIP-Ecosphere.

35 Crosscutting aspects are better covered by IRA [23].

IIP-Ecosphere Platform Handbook
21

Table 1: Mapping RAMI 4.0 and the IIP-Ecosphere architecture

RAMI 4.0 Axis RAMI 4.0 Level IIP-Ecosphere Layer/Component
Layers Asset Not in scope [41, 13], represented through edge AAS

Integration Support Layer, Transport and Connectors Layer
Communication Services Layer
Information Reusable Intelligent Services Layer
Functional Application Layer
Business On top of Application Layer via Applications AAS

Hierarchy Levels Product Not in scope, represented by data
Field Device Not in scope [41, 13], represented through edge AAS
Control Device ECS runtime [41] with deployed services, in particular

Resources and Monitoring Layer with contributions from
upper layers

Station ECS runtime [41], possibly with access to more powerful
resources or UI capabilities for executing or controlling
deployed services. Includes Resources and Monitoring
Layer with contributions from upper layers

Work Centers Reusable Intelligent Services Layer, in particular Data
Integration component

Enterprise Application Layer
Connected World On top of Application Layer via Applications AAS,

including connected IIP-Ecosphere platforms
Life Cycle Value
Stream

Type Component and AAS types prescribing structures
Instance Deployed component and AAS instances

In term of the Industrial Internet Reference Architecture [23], this document can further be
understood as a continuation of the usage view(point) [41], the functional view [13] In terms of a
platform architecture as well as its implementation.

3.1.2 Stream (Data) Processing
In an IIoT/Industry 4.0 setting, often the processing of data is viewed in terms of streams of data items
(or tuples), e.g., produced in regular fashion by a machine, taken up by edge devices for pre-processing,
protocol transformation or retro-fitting, handled further by other devices and (partially) stored in some
data stores, e.g., time series data bases. In contrast to other forms of data processing, e.g., batch
processing, data stream processing can fulfill (soft) realtime requirements, of course, depending on
the (relative) speed of the individual data processors.

Figure 4: Viewing IIoT and Industry 4.0 as data streams.

Figure 4 illustrates the basic components of such a stream processing approach, considering “the
machine” on the left side as constant (conceptually endless) data source. The data produced by the
machine is taken up by a data transformer (e.g., preprocessing, anonymization), passed to a second
transformer (e.g., artificial intelligence) and finally to a sink (e.g., data store, dashboard). From a
different point of view, the data flows in forward manner from source to sink. The edges in such a
graph indicate the data flow and the nodes the data processors. There could be more processors,

Source Transformer Transformer Sink

Legend
forward (local, intra)
forward (inter)
backward (inter)t1 t2 t3

t4

Device 2Device 1, e.g., edge Device 3

22
IIP-Ecosphere Platform Handbook

different kinds of processors or more complicated forward flows that we do not touch in this brief
introduction. Please note, that there is no need for synchronous processing in the nodes, in particular
in the transformers. With synchronous processing, we mean that a transformer operates like a function
in mathematics, i.e., for an input tuple it produces in the same step an output tuple. In contrast,
asynchronous means that the processor receives data item(s) and at some point in time later it may
emit any number of tuples (including none at all).

In Figure 4, there are also two horizontal lines, indicating borders of physical devices, e.g., the first two
streaming components could be running on an edge device, the second transformer on a further
device, and the sink on a third device, e.g., a central server. The distribution of components is not fixed,
e.g., depending on resource usage, the second transformer could also be executed on the first device
or the first transformer on the second device.

Several approaches to stream processing rely on untyped data, i.e., the transformer implementation
decides based on the available data fields, what to process. Such an approach can easily fail at runtime,
when processing nodes are combined that cannot work together, with negative outcomes ranging
from loss of data to runtime errors or exceptions. In contrast, we rely on typed data flows, i.e., for each
forwarding edge the type of data item(s) is known during design and built into the system. As the
design of data processors and data flows will be captured in the configuration model, checking for type
and streaming compliance before realizing or instantiating the system becomes possible. In Figure 4,
the forward flow indicates three data types, t1, t2 and t3. Please note that depending on the
requirements and the design of the data processing, the types may be the same or they could differ,
e.g., indicating that a processor adds or removes data fields.

While in many applications, a forward flow is sufficient, in particular in IIoT/Industry 4.0 settings it
could be desirable, that an upstream processor shall send back data to a downstream processor, e.g.,
a decision node after one or multiple artificial intelligence nodes shall inform the machine at the data
source that some processing parameters must be changed. Akin to the forward flow, we allow for
backward flows. It is just a matter of modelling convenience that we define the forward flow in terms
of nodes and connecting edges, while we consider the backward flow as typed notification data
channel (t4) of a sender and potentially multiple receivers.

3.1.3 Asset Administration Shells
The IIP-Ecosphere platform aims at complying with, integrating of and extending existing standards
and technologies in I4.0 (R7, R14). This applies to protocols, formats but also model standards such as
the Asset Administration Shells (AAS). For short and without aiming for a complete description, an AAS
is an information model, which aims at modelling a physical or virtual Asset in terms of an asset
specification as well as nested, detailing sub-models. Sub-models may consist of typed properties,
operations and heterogeneous collections of sub-model elements. AAS and sub-models can be
classified as static (all information is determined when creating the AAS), dynamic (some information
may change at runtime) or active (callable operations are provided). Similarly, properties and
operations can be static or dynamic, whereby in the dynamic case both element types can be linked to
an implementation, e.g., provided by a remote implementation server, and thus change value (access)
or implementation over time. In particular, AAS for different assets of different vendors can be
provided, linked and integrated, e.g., to link the AAS of a device utilized by the IIP-Ecosphere platform
into the platform AAS in order to have, e.g., the digital nameplate (for industrial equipment [43, 2] or
the documentation of the device at hands. Moreover, composite AAS can be created, representing,
e.g., a complex machine consisting of AAS of the utilized components.

According to the requirements (R7), the IIP-Ecosphere platform shall describe all (distributable)
components, interfaces, functions and deployment targets in terms of AAS. Thus, each of the
components of the platform that forms an individual asset (of a certain vendor) shall receive an own

IIP-Ecosphere Platform Handbook
23

AAS (as indicated in Figure 1). Moreover, the platform itself shall provide an own AAS and each of the
discussed layers shall provide one or more sub-models to link the layers against each other (whereby
the sub-models may and shall link to the vendor AAS of the individual assets, e.g., edge devices). As far
as feasible, the IIP-Ecosphere platform will utilize existing approaches and standards to define the AAS,
but also define own ones where needed, e.g., to characterize the capabilities of deployment targets
such as edge, server or cloud devices [41]. We will detail the platform AAS and its structure in Section
5.

Figure 5: AAS deployment options (D1 remote deployment, D2 local deployment)

As typically several distributed compute resources are involved in a platform installation and each
compute resource shall be described with an own AAS (model, sub-model or as part of joint model/sub-
model), it is helpful to introduce now two basic AAS and component deployment patterns. Figure 5
illustrates the central IT side (the “Platform AAS server”) and two distributed resources D1 and D2,
e.g., edge devices. An AAS can be served locally and only be registered in a central registry or it can be
deployed remotely to a central server. Serving an AAS locally requires a related web server process
(“Resource AAS server” in D2), i.e., a further process to be executed on a resource. Deploying an AAS
centrally avoids such local server processes, but may lead to increased communication with the central
server and, in the case of dynamic or active AAS that allow for dynamic properties and operation calls,
also to redirections of requests via the central server to the resource. To handle requests of dynamic
or active AAS, the resource must run a (further) server instance, the “Resource AAS command server”.
A similar server process must exist on the central IT side of the Platform AAS server to offer dynamic
properties or operations. In the resource case, this “Resource AAS command server” may forward
operations to further processes, or, if the processes are already known when the resource AAS is
constructed, also specific server processes, e.g., for the service manager running in an own container,
can be linked to the AAS and directly contacted to serve AAS requests.

3.1.4 Component Interaction Overview
In the previous sections, we introduced the layers and the high-level components of the platform as
well as the basic concepts of AAS. In this section, we provide a brief overview on the component
interactions for a basic walk-through of platform operations. The individual sections on the
components in Sections 3.5-3.14 will provide more detail on the interactions. In addition, Section 3.15
will address the cross-cutting topic of testing support for services and applications.

The aim of this walk-through is to bring up the ECS runtime, the service manager (in terms of a
container), some services, to let the services run and to stop all parts in reverse order. Services are
described in terms of a service mesh forming individual applications (we will detail how to define such
a mech in Section 6). The required high-level interactions are illustrated in the sequence diagram in
Figure 6. We will go through them now from top/left to bottom/right.

Platform AAS server
(registry, central AAS)

Resource AAS command server

ECS-runtime Service manager

Services

Resource AAS command server

ECS-runtime Service manager

Services

Resource AAS server

D1

D2

24
IIP-Ecosphere Platform Handbook

1. At the beginning, the platform AAS-Server is running. An ECS runtime is started for a certain
resource, e.g., an edge device. The ECS runtime instance then deploys its own sub-model
characterizing the device with container operations and a collection of available containers
(initially empty) into the platform AAS (remote deployment). A scheduled background process
of the ECS runtime is started to inform the platform AAS about the actual resource state
(resource monitoring, not shown in Figure 6). Depending on the device, the ECS runtime may
provide information about an existing device AAS or create a device AAS on its own (one
particular point of openness as the device vendor may or may not provide an AAS). This
information is linked from the platform AAS.

2. Via the user interface (UI), the user requests a list of available resources. The UI reads out the
AAS submodel for resources including the ECS runtime instance started in step 1 and prints
out device information including the actual resource usage. In a similar manner, further
information can be obtained, e.g., the available services, the defined applications, the
packaged service artifacts or the available containers.

Figure 6: High-level component interaction for basic platform interactions.

3. The UI requests adding a container via the ECS operations known to the platform AAS, leading
to a remote method call to the ECS runtime (AAS implementation server). For this walk-
through, we assume that the container contains the service manager and provides the
technical dependencies for services to be executed on the respective device. Starting a
container may lead to a download of the container from a central platform server (indicated
by #) or from a file system of the device. Information about the container instance is made
available to the platform AAS by creating a structure in the containers submodel of the
platform AAS.

4. The user requests starting the container added in step 3, i.e., the UI calls the respective
platform AAS operation, leading to a remote call to the ECS runtime (AAS implementation
server), respective operations in the container management implementation, e.g., Docker,

UI

Platform-AAS
ECS-Runtime

Service Manager

Service Environment

deployEcs

deployServiceMgr

listResources
addContainer

startContainer

addArtifact #

startServices

*
*

stopServices

undeployArtifact

stopContainer

removeContainer

ServiceServiceService

createArtifact/Service

checkRelation/createRelation

deleteRelation

deleteService/Artifact

removeContainer

createContainer
#

Legend
Usual call
AAS request/call
(VAB) Remote call
AAS modification

call with download
operation phase boundary
potential deployment boundary

IIP-Ecosphere Platform Handbook
25

and, ultimately, when the container is running, to an automated start of the service manager.
In turn, the service manager deploys information about itself, e.g., service operations, into the
platform AAS, more precisely into the device entry created by the ECS runtime so that services
on the underlying device can be managed.

5. So far, no service is known. The user requests to add a service via an operation of the platform
AAS, leading to a remote method invocation to the Service Manager (AAS implementation
server). In turn, as for the container, the service manager may download an implementation
artifact containing the service execution environment and the individual services for the actual
device. The service manager adds entries for the artifact and all contained services to the
respective sub-models of the platform AAS.

6. The user requests the start of all services for the device addressed in the steps above. The
service manager starts the service environment and creates the service instances in the
sequence of dependencies, i.e., starting with the service having no data dependencies or for
which all prerequisite services are already running. During this step, several free network ports
may be acquired for internal communication, relations to a global or a local protocol
server/broker may be established and individual operating system processes for the services
may be started. Further, connector settings may be adjusted to device-provided services as
stated in the device AAS, e.g., specific IP address, actual port or even the startup-time selection
of the right protocol implementation depending on the device-specified protocol version, e.g.,
MQTT v3 vs. MQTT v5. These detailed technical procedures are not shown in Figure 6. During
service startup, the Service Manager checks the service relations in the platform AAS (services
sub-model) for service availability and, as soon as the service is up, creates a relation entry
linking two subsequent services in the service mesh of an IIoT application running on the
platform.

7. The services are running now, receiving data via the machine/platform connectors, executing
functionality specified for the actual application, e.g., AI-based inference. During the
execution, background processes collect data for the device and the individual services and
inform the platform AAS about changing runtime states, e.g., resource consumption. Here we
also indicate in Figure 6 the resource monitoring of the resource mentioned in step 1.

8. The user requests to stop the running services via a respective operation of the platform AAS,
which causes a remote method invocation to the Service Manager. In turn, the Service
Manager removes the service relations in the platform AAS and stops the service environment
and the services.

9. The user decides that the artifact will not be used any longer, i.e., a platform AAS operation is
called and causes a remote method call to the Service Manager, which removes service and
artifact entries from the platform AAS.

10. As also the service management container shall not be used anymore, a command from the UI
to the respective AAS operation leads to a remote method call to the ECS runtime, which
commands a stop of the container through the underlying container implementation.

11. Ultimately, the container shall also be removed from the management realm of the device,
leading to a further remote method call to the ECS runtime, performing a removal of the
container information from the platform AAS.

The horizontal dashed, red lines in Figure 6 indicate phases of the operations, i.e., startup (step 1),
preparation of containers and services (steps 2-5), service operation (steps 6-7), shutdown (steps 8-
11). The vertical yellow dashed lines indicate a potential distribution to different logical or physical
devices. Extreme cases are that all components run on the same device, e.g., for testing, or that UI,
platform AAS, ECS runtime and service manager/services are installed/started in separate devices.

26
IIP-Ecosphere Platform Handbook

It is important to emphasize that the “user” in this walk-through may be a human, an automated
process of the UI or the platform itself acting on behalf of the user. An automated process could be a
deployment script, which lists the assignment of containers and services to resources so that the UI
can execute the desired deployment in a single step (broken down into the actions discussed above).
Also, as intended for the Deployment component, the platform may calculate such a distribution of
services and containers and enact the deployment automatically or autonomously.

Moreover, it is important to mention that not all services of an application must be started at once by
a single command. If services shall be distributed to different devices, individual start commands are
required to enact this form of distribution. However, for a human, defining such a distributed
deployment stepwise is cumbersome. For this purpose, the platform offers mechanisms to script such
deployments or – as envisioned for future versions of the platform – to calculate and enact them
automatically.

3.1.5 Virtual Character of the Platform
As stated in Section 1, the IIP-Ecosphere platform shall be designed as a virtual platform (R3), i.e., a
platform that offers services on top of existing already installed platform functionality. The idea is that
the Connectors component in the Transport and Connection Layer map relevant underlying platform
information and functionality into the IIP-Ecosphere platform. Where feasible, this mapping shall
happen in the form of AAS as it allows for an overarching information model, but also further
approaches like OPC UA or MQTT may be used. We see here three alternatives, focusing on AAS as the
default approach, potentially using a transport protocol like MQTT for high-speed data connections:

1. An underlying platform provides its own AAS and manages the access to selected functionality
and data. Theoretically, this AAS could be mapped side-by-side into the AAS of the IIP-
Ecosphere platform. Then, layers such as deployment device management, or monitoring
could directly utilize the information. Therefore, a standardized AAS structure for
manufacturing platforms would be desirable, but such a standard currently does not exist.

2. The AAS connector of the IIP-Ecosphere platform can map the AAS of the underlying platform
into the format of IIP-Ecosphere. Of course, this adds additional overhead and in some cases
a mapping may not be possible at all.

3. One of the other IIP-Ecosphere connectors provides a protocol that allows mapping the
underlying platform and its operations into the IIP-Ecosphere AAS format. This approach may
require manual programming, while the second approach might be realized easier through
mapping and code generation.

Besides having the AAS of an underlying platform, relevant components of the IIP-Ecosphere platform,
in particular the resource management and monitoring component are required to operate with
multiple AAS instances (for now based on the IIP-Ecosphere AAS structure).

3.2 Development Streams
Realizing the IIP-Ecosphere platform in one big shot is not realistic. As already indicated in the previous
sections, we rely on incremental and agile development, so that delayed concepts, designs and results
can be integrated flexibly, e.g., after initial experimentation with the available platform components.
For the increments, we identified three development streams as indicated in Figure 7.

In the first stream, we aim at the basic functions, i.e., support for creating AAS, data transport, data
connectors, basic service interfaces and management as well as the environment for running services
on edge, cloud or server installations (ECS runtime). In agile spirit, these realizations must be functional
and tested but not complete, e.g., it is more important to start/stop dependent services/containers
rather than to perform a runtime migration of services or containers.

IIP-Ecosphere Platform Handbook
27

In the second stream, advanced functions are added and functionality missing from the first
development stream may be realized. At latest, missing functionality will be integrated with the
improved and advanced functions in the third development stream.

We do not indicate a detailed time schedule for the streams or functionalities here. The first
development stream was completed in Spring 2021, the first release of the second stream was made
available in Summer 2021 (along with this version of the handbook) while the second development
stream was mostly completed until end of 2022. Each stream is manifested by at least one release of
the platform. This version of the platform handbook summarizes the state for the second release in
the second development stream. Although this version adds several new features (dynamic service
ensembles, data processing library, container mocking, service test generation, use of semantic Ids in
AAS, distributed testing and evaluation environment), it mainly targets the revision and stabilization
of functions (asynchronous streams, monitoring, web-based UI) as identified during the development
of the Hannover Messe 2022 demonstrator [11]. Many features for the second development stream
(initial advanced functions) are completed. For security and data protection, a platform service for
anonymization is integrated, while data lakes/stores are still in conception. Similarly, the data
integration and the AI toolkit partially do exist (and their conceptual foundations are still in progress)
but are currently not (completely) integrated. Adaptive services, e.g., runtime parameterization or
switching between compatible service alternatives was already introduced with version 0.3.0 of the
platform.

Figure 7: Development streams for the IIP-Ecosphere platform

3.3 Overall Requirements
In general, all platform layers and components discussed below must take the following general
requirements from [13] into account:

Table 2: General platform requirements in [13]

Requirement Summary
R1 Vendor and technology neutral platform
R2 Use of standards
R3 Design as a virtual platform
R4 Design based on components and services
R5 Use of Open Source, with respect to the licensing rules of IIP-Ecosphere
R6 Open for optional/commercial components
R7 Use of AAS for interfaces
R8 Use of systematic variant management techniques
R9 Means for availability
R10 Soft realtime processing (<100 ms) for production-critical functions
R11 Documentation (also in terms of this handbook)
R12 Documentation of processing steps (of applications, supporting data privacy)

Basic functions

Transport, Connectors

AAS support

Services

ECS Runtime

Initial advanced functions
Configuration model

Artifact generation

Monitoring

Device management

Improved/advanced functions

Deployment optimization

Adaptive services

Distributed evaluation

AI Toolkit

Data integration, GAIA-X

Security / Data protection

Management UI Management UI

Monitoring

28
IIP-Ecosphere Platform Handbook

As already indicated in Table 2, [13] also specifies quality requirements such as R10. Besides security
and data protection requirements, there are also data frequency and volume requirements that are
not so obvious, in particular as they are assigned to specific topics/components of the architecture in
[13]. To provide an overview, we discuss them here on a global level for the entire platform.

In Table 3, we summarize the cross-cutting quality requirements, i.e., in particular those that may
require specific considerations regarding time-critical functionality such as the (stream) processing or
data transport. Although the IIP-Ecosphere platform aims at the deployment of components to edge
devices, both, the services as well as the platform operations there belong to the IT realm so that OT
requirements such as R35 or the OT sensor sampling frequency mentioned in R28 do not directly apply.
However, a machine pulse of 8 ms (R28) as well as an hourly throughput of 7 GByte as well as an
expected size of data items with 50 values (R19a) are highly relevant for judging the performance of
the IIP-Ecosphere platform. As also mentioned in [13], not all data volume and frequency requirements
were indicated while collecting the requirements from the partners, i.e., the platform shall aim for
even higher speed (such as a 50 ms cycle time) or a throughput of 600 GByte per day.

It is also important to recall from [13], that the IIP-Ecosphere platform is primarily responsible for its
mechanisms and included services, i.e., providers for services to be packaged with the platform will
have to obey the quality requirements in [13] and in particular Table 5. Further, as also discussed in
[13], the platform is not responsible for the quality of external services, e.g., application-specific or
user-specific services (while measures may apply to report or terminate services that potentially taint
given runtime requirements).

Table 3: Overview of (global) quality requirements on data frequency and volume

As an illustration, we discuss the quality requirements now in terms of hypothetical numbers. From
the data transport perspective, the requirements command that each machine can ingest a data item
with around 50 values each 8 ms, i.e., 125 messages per second. This leads to at least 450.000
messages per hour (per machine/edge device). If we assume a size of 654 Byte payload (actual size of
a simple JSON serialization of such as message), a source produces around 280 Mbyte per hour (just
focusing on the raw data payload, i.e., not on additional information, e.g., for routing or meta-
information as stated in R79). On a platform-level (R91, R22), aggregating components of the IIP-
Ecosphere platform will have to cope with multiple parallel streams of this kind, which requires 26
such streams to reach the requested 7 Gbyte (in a real setting with payload and overhead). Of course,
the distribution may be different, i.e., more streams at lower ingestion frequency or less streams at
maximum frequency, potentially with image payloads, to reach several hundreds of GBytes per hour.

In the discussion of the individual layers/components, we will refer to these general requirements and
re-iterate the argumentation only for affected layers or layers that already have been (initially)
evaluated.

Requirement Summary
R10 Soft realtime, response time < 100 ms for production critical functionality
R19a Sample data set of 50 values of different types all 20-30 s
R19e Output data shall be provided all 5 s
R21 Low impact on data throughput
R22 Overall platform throughput of 500 GByte per year
R28 OT sensor sampling frequency 0.2 ms, machine pulse 8 ms, step pulse 5 s, process

pulse 25 s (mentioned in the explanation of the cloud requirement R28)
R35 OT sampling frequency of 2 ms
R91 7 GByte per hour as input for data integration, which may be aggregated to 2

Gbyte per hour.

IIP-Ecosphere Platform Handbook
29

3.4 UML Profiles
The IIP-Ecosphere architecture model is based on three UML profiles, the IIP-Ecosphere profile
introduced in Section 3.4.1, the UMLsec [24] profile for security modeling in Section 3.4.2 as well as
the security and privacy profile in Section 3.4.3. All three profiles aim at classifying and defining
orthogonal information to be attached to individual modeling elements. While the IIP-Ecosphere
profile as well as the security and privacy profile are mostly of descriptive nature, i.e., indicate
additional information such as open source licenses and component versions, the UMLsec profile is
the basis for automated security analyses of UML models using the CHARiSMA tool.

3.4.1 IIP-Ecosphere Profile
The aim of the IIP-Ecosphere profile is to classify and categorize modeling elements in the IIP-
Ecosphere architecture, i.e., to express orthogonal semantics in a uniform manner. We will now briefly
discuss the individual concepts and parts of the profile.

Figure 8: AAS stereotypes in the IIP-Ecosphere profile (comments cropped).

One cornerstone of the IIP-Ecosphere platform is the exploration and use of Asset Administration
Shells (AAS, R7 in [13]). The partners decided to use AAS in particular to describe interfaces of the
platform (internal, external) and communication with these interfaces in a standard-based uniform
approach36. Thus, from an architectural point of view, it is relevant to model (structural) AAS aspects.
We use AAS in terms of classes, interfaces and operations tagged by the stereotypes depicted in Figure
8. A class/interface can be marked by the «AAS» stereotype to express that there shall be an AAS
providing access to the contained data. An «AAS-DataConnector» is a communication endpoint37,
e.g., for soft-realtime (streaming) connections. Such endpoints that are currently not part of the AAS
standard38. An «AAS-Property» is a static or dynamic attribute of an AAS. UML properties may also
indicate that a substructure (i.e., an «AAS-SubModel») shall be exhibited by an AAS. Moreover, AAS
may describe functional interfaces using the «AAS-Operation» stereotype.

Moreover, an «AAS-Client» is per se not an AAS element. In the IIP-Ecosphere platform, an AAS-
Client is a supporting class implementing how to access properties or how to execute operations.
These classes shall be defined along with the respective AAS and can be tested directly against the
AAS.

As our approach to modeling is pragmatic and agile, we do not aim at covering all possible aspects of
AAS. Please note that the stereotypes just indicate that the respective information shall be represented
in a realizing AAS. We do neither model the concrete names used in a realizing AAS, the completeness
of models or sub-models nor any sequence of contained AAS elements. Besides properties that can

36 Design guidelines for AAS must still be agreed upon by the partners or discussed with other projects.
Although this affects the implementation, the actual AAS design guidelines are outside the scope of the
architecture, i.e., we focus here just the relevant aspects such as properties, operations and
links/dependencies.
37 Following [41], we do not use the term “endpoint” in this document rather than “data connector”. For links
among data connectors and endpoints, we use the terms “relation” [41], “data flow” or “data path” [13].
38 There is ongoing work on standardizing communication endpoints. If possible, we will adopt this upcoming
standard in a later release.

30
IIP-Ecosphere Platform Handbook

change their value at runtime or sub-models that occur on demand, dynamic relations among AAS
elements can be modeled by dependencies marked with the AAS-dynamic stereotype.

A second cornerstone are services, in particular to encapsulate platform functionality or (re-usable) AI
methods. According to the profile (Figure 9), a service can be modeled as an interface (with
implementation aspects hidden) or as a class (i.e., a namespace with properties and operations).
Related to services are (platform) connectors that ingest data into the platform or are involved in
offloading data/processing to other platforms or a cloud. Typically, for one connector type multiple
alternatives are offered and also additional connectors can be added (openness, e.g., R14, R16). To
indicate these elements, the profile contains a generic «Connector» stereotype that can also be used
to indicate Cloud connectors and (for security) optional IDS connectors.

Figure 9: Service and connector stereotypes in the IIP-Ecosphere profile (comments cropped).

In IIP-Ecosphere, services shall be deployed in terms of virtualized containers. Therefore,
implementing elements can be marked as «Container» (Figure 10). Further, besides services,
individual platform components can be marked as «Distributable» while parts not marked as
«Distributable» shall remain part of a central platform installation.

Figure 10: Container and distribution stereotypes in the IIP-Ecosphere profile (comments cropped).

To simplify the models, i.e., to avoid repetitively modeling of typical mechanisms or collaborations, the
profile allows indicating architecture, design or implementation patterns39, to explain/detail a model
element in an uniform manner, but also to guideline the implementation. Figure 11 depicts simple
patterns like architectural layers40, delegation of control to another element via an association, read-
only attributes (without corresponding setter)41, builder pattern42 (or classes that shall use this pattern
to realize read-only attributes) or visitor pattern43. Figure 12 illustrates stereotypes for marking an
object factory44 (an exchangeable mechanism that creates instances) or plugins as one form to extend
platform functionality at defined points. A «Plugin» is detailed by a «PluginType» providing more

39 An important reference here is the GoF book [17], but for simplifying the understanding, we just provide
some Web references.
40 https://en.wikipedia.org/wiki/Multitier_architecture
41 UML and Papyrus offer a read-only meta-property of the meta-class Property. However, displaying this
information in the diagram is tedious, so we just define the corresponding stereotype read-only.
42 https://en.wikipedia.org/wiki/Builder_pattern
43 https://en.wikipedia.org/wiki/Visitor_pattern
44 https://en.wikipedia.org/wiki/Factory_method_pattern

https://en.wikipedia.org/wiki/Multitier_architecture
https://en.wikipedia.org/wiki/Builder_pattern
https://en.wikipedia.org/wiki/Visitor_pattern
https://en.wikipedia.org/wiki/Factory_method_pattern

IIP-Ecosphere Platform Handbook
31

information on how to implement/register the plugin. The default type is JSL, the Java Service Loader45,
a simple mechanism on an implementation to its (descriptor) interface without direct dependencies in
code. These patterns support the openness of the platform, e.g. extensibility for optional components
in R6 [13].

Figure 11: Basic architecture/implementation patterns in the IIP-Ecosphere profile (comments cropped).

Figure 12: Factory and plugin/registration patterns in the IIP-Ecosphere profile (comments cropped).

Due to the AI nature of IIP-Ecosphere it is important to recognize that code written in various
programming languages and under licenses must be integrated (R5, R6, R113 in [13]). The stereotypes
in Figure 13 allow indicating these two dimensions also to locate potential pitfalls. External
components not marked with the OpenSource stereotype are meant to be commercial/proprietary
and shall be only used as alternatives rather than mandatory or default components, i.e., their
installation shall be left to the user’s choice. «OpenSource» components are characterized by their
license(s) and their version. If no version is indicated, no decision was made so far, i.e., the
component was not integrated so far.

Figure 13: Licenses and programming languages in the IIP-Ecosphere profile (comments cropped).

Within the architecture model, it is also relevant to mark the maturity status of individual parts, e.g.,
to distinguish initial models from detailed models that are actually implemented (Figure 14). Some
parts (within models) may not have been realized so far and can be marked with «Omitted». The

45 https://docs.oracle.com/javase/9/docs/api/java/util/ServiceLoader.html

https://docs.oracle.com/javase/9/docs/api/java/util/ServiceLoader.html

32
IIP-Ecosphere Platform Handbook

maturity status can be attached to a model or individual modeling elements if applicable, but in
particular also to comments. We use comments to document the aim/contents of each UML diagram
(often cropped in this document) and may then attach the maturity stereotype to that comment.

Figure 14: Maturity status for comments, packages or models.

Another special contribution of the IIP-Ecosphere platform is to aim for an encompassing and
consistent configuration model that ranges from devices over services to service orchestration and
covers static pre-runtime and runtime aspects, e.g., for deployment optimization or self-adaptation
(R120-R126, R107 in [13] as listed in Section 3.1). We use the Integrated Variability Modeling Language
(IVML) [10] to describe the configuration model and we indicate aspects of the variability modeling in
the architecture models. IVML is realized in terms of the EASy-Producer [36] toolset, an external open
source component that we integrate into the IIP-Ecosphere Platform. For short, the IVML configuration
meta-model of IIP-Ecosphere (represented as information items marked with the IVML stereotype
shown in Figure 15) defines the structure, configuration options and validity criteria for all potential
platform instances. The configuration (also an IVML model) instantiates the meta-model and details
the configuration decisions for a specific platform instance, e.g., on which server the platform AAS will
be located, which concrete services are available etc. One particular architectural aspect is the
structure of the IVML (meta-)model and its relation to the layers of the platform. The (meta- and
configuration) model consists of individual modules (called projects). We specify this decomposition
of the configuration model into modules (represented as information items tagged with «IVML») in
terms of dependencies decorated with «IVML-Import». Ultimately, mechanisms of EASy-Producer
will validate the configuration and automatically modify, include, exclude, generate or package
artifacts that finally make up the configured platform instance.

A further architecturally important aspect are the components and classes realizing the variations
defined in the configuration model (i.e., the implementation parts to be included, excluded, modified,
linked with glue code etc.). We use the Software Product Line [42] notion of «Alternative» or
«Optional» artifacts and mark the respective components using the stereotypes shown in Figure 15.
Examples are alternative transport connectors (one must be selected) or optional components (that
can be part of the platform instance or not) such as IDS or cloud connectors. As these stereotypes are
intended to be illustrative and explanatory rather than for defining a configuration or an artifact model,
we do not include further variability details as done in typical variability profiles, e.g. in [44, 18]. In
particular, components marked with «Alternative» or Optional shall be designed and
implemented carefully with respect to their dependencies, i.e., leaving out an «Optional»
component or replacing an «Alternative» component must not render a platform instantiation
invalid unless the governing configuration is invalid.

IIP-Ecosphere Platform Handbook
33

Figure 15: Configuration modeling and variability management stereotypes (comments cropped).

One form of instantiating a configuration model is to generate code, e.g., data transport code or
glue/binding code between a hand-crafted implementation and platform interfaces to ease the
development of consistent applications. To indicate that parts of the architecture are intentionally left
open as they will be filled through generation from the platform configuration model during platform
instantiation, we mark these parts by the «Generated» stereotype shown in Figure 16.

Figure 16: Stereotype for generated code (comments cropped).

The IIP-Ecosphere platform shall provide self-adaptive capabilities at runtime based on the (runtime
part of the) configuration model (see R102-R109 and R120-R126 in [13]). Examples of platform
elements that could be adapted are container deployment locations or actual AI services used in the
same deployment location. To indicate model elements that are related to adaptation, the IIP-
Ecosphere profile defines the stereotype «Adaptation» (Figure 17). One particular example for the
application of this stereotype is to mark states in a state diagram that would not be needed without
self-adaptation functionality, but which are required for self-adaptation.

Figure 17: Marking model elements as support for self-adaptation.

34
IIP-Ecosphere Platform Handbook

In some situations, we also include experimental components in the architecture, in particular to
introduce a certain concept that is used later on in the discussion, e.g., in a validation. To indicate such
experimental components, we utilize the stereotype shown in Figure 18. For various reasons,
experimental components may not be found in the IIP-Ecosphere source code repository and they may
also not be subject to the continuous integration.

Figure 18: Marking experimental components

In Papyrus, it is possible to define a stylesheet to adapt the formatting of modeling elements based on
the applied stereotypes. We will use this mechanism to mark important stereotypes, e.g., issue
comments or omitted elements, in a uniform manner such as uniform fill or text colors.

3.4.2 UMLSec Profile
UMLsec46 provides a model-based approach to develop and analyze security critical-software, in which
security requirements such as confidentiality, integrity, and availability are expressed within UML
diagrams. The UMLsec language is provided as a UML profile and can be imported into existing UML
tools. In UMLsec, different stereotypes and tags are used to annotate UML diagrams with security
properties. UMLsec provides various security checks to ensure the annotated properties. The CARiSMA
tool performs the corresponding security checks. The idea of UMLsec is to provide maximal analysis
power while allowing to use everyday development tools for the development process.

While the UMLsec profile is defined as a light-weight UML extension, it is also possible to define it using
heavyweight extensions to specify the change of semantics. One can make use of an extended meta-
model (analysis model). This analysis model provides the possibility of more complex analysis by
extending the basic UML meta-model.

As mentioned above, UMLsec provides different security checks to verify whether a security property
in a system is violated, and a security mechanism is needed to restore it. In this document, we explain
two security checks, namely secure links and secure dependency. Secure links is used for the description
and the analysis of secure data flows over connections between the artifacts in a UML deployment
diagram, which describes the physical layer of a system. Secure dependency ensures that various
dependencies between interfaces in a structure of a system model respect the security requirements
of the data communicated across them.

3.4.2.1 Secure Links Check
The physical layer of a system is modeled by a deployment diagram, including physical nodes, the
communications between them (modeled by links), the (software) artifacts and the dependencies
between the artifacts. The secure links annotation enables one to ensure the security of
communications in a physical layer.

In UMLsec, to perform a security check, adversary patterns are required. Such patterns specify the
potential access paths threatened by a certain attacker. Table 4.1, represents the default adversary, as

46 https://rgse.uni-koblenz.de/jj/umlsec/

https://rgse.uni-koblenz.de/jj/umlsec/

IIP-Ecosphere Platform Handbook
35

an example of an adversary pattern. For a given adversary of type A, the set ThreatA(s) specifies which
kinds of actions the adversary can apply to a node or a link marked with the stereotypes. For example,
considering an unencrypted internet communication link, the default attacker
(Threatdefault(internet)) can delete, read and insert messages transmitted over this link.

Figure 19: The UMLsec default adversary pattern

The stereotype «secure links» implies the following conditions: for each dependency annotated
with stereotype s ∈ { «secrecy», «integrity», «high» } between two artifacts deployed on two
nodes n, m, we have a communication link l between n and m with stereotype t such that:

• s = «high», implies that threatA(t) = ∅,
• s = «secrecy», implies that read ∈/ threatA(t), and
• s = «integrity», implies that insert ∈/ threatA(t).

For instance, if a communication link between two nodes n, m are annotated with «internet», and
the dependency between two artifacts a1 (deployed on node n) and a2 (deployed on node m) are
annotated with «high», then the security constraint associated with the stereotype «secure
links» is violated: the dependency annotated with «high» demands that the set of threats of an
adversary is empty, however, the communication link is annotated with «internet», meaning that
the adversary is capable of reading, deleting, or inserting messages over the link between n and m.
Consequently, the security requirement of the communications is not supported.

3.4.2.2 Secure Dependency Check
In UML, a dependency between two model elements is a relationship that denotes a model element
requires other model elements for its specification or implementation. In other words, the complete
semantics of the client element is either semantically or structurally dependent on the definition of
the supplier element. The stereotype «secure dependency» implies that the security requirements
have to be supported by both sides of the dependency (respective classifiers) and the dependency
itself.

Later in this document (within the data security layer) we describe the UMLsec profile within the
architecture model of the IIP-Ecosphere. Furthermore, we show how a CARiSMA check can be
performed on such models to verify the security level of the architecture models.

3.4.3 Security and Privacy Profile
To enhance the security and privacy of the platform, we create a dedicated Security and Privacy UML
profile. The purpose of this UML Profile is to provide a catalog of security and privacy mechanisms to
annotate corresponding UML models and the architecture of the platform. With such an annotation
process, we can express appropriate mechanisms on a high abstraction level. In this way we give an
overview of a complete security and privacy framework to the developers and designers of the system.
Furthermore, this dedicated profile enables privacy and security audits. Audits lead to increased
software quality.

36
IIP-Ecosphere Platform Handbook

The catalog represented by the profile introduces a means to structure privacy and security
mechanisms in multiple abstraction levels. Namely, design strategies, sub strategies, patterns, and
privacy enhancing technologies (PET) that can be applied to design of the platform.

The feature model in Figure 20 shows the four abstraction levels of the privacy and security concept.
A feature model describes a set of features and their relations, here privacy and security features and
their relations. The main structure of the feature model is hierarchical. But there are relations that do
not follow the hierarchical structure. Some features may require other features. For example,
Authorization requires Authentication. Other features may exclude each other, for example,
Anonymity Set and Notify.

Figure 20: An excerpt of the feature model including privacy design strategies, sub-strategies, privacy patterns,
and PETs (cf. [1] Figure 6.5).

Figure 21 shows the UML privacy and security profile we created based on the feature model shown
in Figure 20. We adopted the hierarchical structure of the feature model and recreated it in terms of
a UML profile. The profile has the same 5 levels as shown in the feature model, the root level
PrivacySecurity, the Strategy level, Sub Strategy level, the Pattern level and the PET level.

For each level we defined to what elements in the model the stereotype can be annotated with that
stereotype. For example, we can use the «Privacy» security stereotype to annotate components and
packages. Stereotypes from the strategy level, like Hide, can additionally be used to annotate classes
and interfaces.

IIP-Ecosphere Platform Handbook
37

Figure 21: The Privacy and Security UML Profile (excerpt, cropped).

We discuss now specific examples on how the stereotypes from the UML privacy and security profile
can be used. In IIP-Ecosphere, the profile can be used by business partners to communicate with each
other about business secrets or to communicate with expensive production equipment. Unauthorized
access to the system can cause severe damage to the companies using and trusting it.

38
IIP-Ecosphere Platform Handbook

We will now use the stereotypes to annotate our model with the role-based access control (RBAC)
stereotype. In RBAC, the access rights are assigned to roles. Then individuals are assigned to the roles.
This has multiple advantages over assigning roles directly to individuals. RBAC is a privacy enhancing
technology. In our hierarchy, the RBAC PET is located in the Minimize Strategy, the Restrict Sub
Strategy and the Authorization Pattern.

Figure 22 shows an interface (to be introduced in Section 3.6.3) annotated with the
«Authorization» stereotype, and in that interface the write method is annotated with the RBAC
and the Log stereotype.

Figure 22: Interface annotated with Privacy and Security stereotypes

Figure 23 shows how the serialization package (to be introduced in Section 3.6.2) is annotated with
the «Hashing» and «Signing» stereotypes. The contents of the package has been omitted in order
to focus on the stereotype application. Serialization is one important part of storing, loading and
transmitting data. With «Hashing» we can increase the integrity and with signing we can verify the
origin of the data.

Figure 23: Package annotated with Privacy and Security stereotypes

Table 4 shows an excerpt of strategies, sub strategies, pattern and PETs that are suitable for the
system. The design strategies, patterns, and privacy enhancing technologies are based on the work of
Ahmadian [1]. The strategies are adapted from Hoepman [21].

Table 4: Design strategies, patterns, and privacy enhancing technologies for the IIP-Ecosphere architecture.
(cf. [1] Appendix F).

Strategy Sub Strategy Pattern PET

Minimize Strip Authentication
Destroy Limited Data Retention

Hide

Restrict Authorization RBAC, Cryptographic Protocols, VPN
Mix Hashing
Obfuscate Added Noise Measurement
Dissociate Pseudonymous Identity

Separate Distribute Private link Private Data private Device,
Secure Storage

Isolate Confinement Pattern Isolate Sensors from System

Demonstr
ate

Audit

Audit interceptor
Signing

Log Secure logger

IIP-Ecosphere Platform Handbook
39

3.4.4 IoT Component Security and Privacy Profile
In parallel to the concepts provided in the previous section, and in the context of a study to research
the methods and mechanisms currently used to support security and privacy requirements in IIoT
platforms another feature model is designed in which such mechanism are assigned to the relevant
security and privacy goals. The mechanisms and technologies contained in this feature model partly
include the mechanisms and technologies that were already introduced in Figure 20.

Figure 24: The assignment of mechanisms and technologies (proper to support security and privacy in IIoT platforms) to the
security and privacy goals.

In the study to design this feature model, the documentations of several IIoT platform are investigated
to obtain the proper mechanisms that potentially can support privacy and security.

Figure 24 shows the goals, the technologies and implementations of security and data protection in
form of a feature model. The top level of the model is formed by the protection goals confidentiality,
integrity, availability, intervenability, unlinkability, and transparency. Confidentiality, integrity,
availability represent central requirements for both security and data protection. Intervenability,
unlinkability, and transparency are specific to data protection.

The middle layer of the model represents the technologies used to implement the goals. A technology
can be used to fulfill multiple objectives. For example, access control technology is used to implement
both confidentiality and unlinkability requirements.

The lowest level of the model consists of concretely named implementations of the technologies of
the middle level. The selection of implementations here refers to the explicitly named
implementations of the technologies within the IoT platforms studied. The goal of intervenability has
not been assigned any technologies or implementations, since the implementation of this goal cannot
be realized by an additional component within the platform, but must be considered in the design and
architecture of the complete application.

40
IIP-Ecosphere Platform Handbook

A navigable association from a goal to a technology represents that the technology can be used to
fulfill a part of the goal's requirements. Whether a technology is sufficient to fulfill a goal depends on
the component under investigation. For example, when implementing the confidentiality goal for data
in transit, only encryption technology is needed, not access control. However, for data at rest, both
encryption and access control are required to meet the confidentiality goal.

A navigable association from one technology to another technology specifies the use of the
technology. For example, there is an association from the technology encryption to the technology
encrypted data storage. In this case, the use of the technology is concretized without specifying an
exact implementation. In the example given, it is only noted that the data store is encrypted, but not
how.

A navigable association from one technology to one implementation represents an explicit
implementation of the technology. An association from one technology to multiple implementations
indicates alternatives that are not mutually exclusive but serve the same purpose.

For example, the technology encryption can be implemented by the implementation IPSec as well as
by the implementation TLS. Both implementations can operate simultaneously and serve the same
purpose of encrypting data in transit.

A navigable association from one implementation to another implementation represents that one
implementation uses, or builds upon, the other implementation. For example, there is an association
from TLS to HTTPS. The HTTPS protocol uses TLS to encrypt connections. The protocols assume that
security features are used if possible.

Technologies that were identified supporting the profile shown in Figure 24 are summarized in the
Section 7.2.

3.5 Support Layer
The Support Layer aims at providing useful common functions and abstractions to ease the realization
of the IIP-Ecosphere platform. Thus, it is more a support library than a full layer, i.e., it does not provide
an own AAS representing the interface of the layer. However, even as a support library it is used by
the Transport and Connection layer, i.e., the support functionality logically forms an own layer. Below,
we detail the AAS abstraction in Section 3.5.1, the network manager in Section 3.5.2 and the lifecycle
support in Section 3.5.3. Section 3.5.4 discusses the low level system monitoring support, Section 3.5.5
basic mechanisms for identity management and Section 3.5.6 mechanisms to access program
resources on demand. Section 3.5.6 combines the parts and pieces into an AAS creation and usage
design pattern that is used in several upstream platform components.

3.5.1 Asset Administration Shell Abstraction
A core aim of the Support Layer is to abstract over the used AAS implementation. This allows for
flexibility (the AAS implementation can be exchanged), but also to mitigate risks of impacts by the
currently evolving AAS standard and its implementations. Thus, the abstraction described here aims at
supporting the application of AAS for the description of interfaces (R7), the application of standards
(R2) and enables openness for different AAS implementations, including potential upcoming
commercial implementations (R6). Further, an abstraction contributes to the IIP-Ecosphere goal of
increasing interoperability, as currently several AAS implementations do exist that potentially do not
interoperate (see LNI Testbed Asset Administration Shell47). Thus, an abstraction also mitigates
development risks, as the current rather dynamic external implementation activities may lead to
partially disruptive technical changes.

47 https://lni40.de/lni40-content/uploads/2020/11/AAS-testbed.pdf

https://lni40.de/lni40-content/uploads/2020/11/AAS-testbed.pdf

IIP-Ecosphere Platform Handbook
41

Figure 25: Support Layer overview (only selected classes/interfaces/operations are shown)

Figure 25 depicts the three parts of the support layer. The core is the aas component, which defines
the IIP-Ecosphere abstraction of AAS. The iip-aas component on top utilizes the AAS abstraction to
add further functionality that eases the realization of the IIP-Ecosphere platform, e.g., mechanisms
how to dynamically link alternative and optional AAS sub-models of different components into the
platform AAS. We employ BaSyx as the default AAS implementation of the IIP-Ecosphere platform. The
aas.basyx component implements the interfaces defined by the aas component and provides a

42
IIP-Ecosphere Platform Handbook

factory implementation to transparently instantiate abstract concepts based on the underlying BaSyx
implementation. As BaSyx ships with a large number of dependencies and not all of these
dependencies may be needed on an edge device, e.g., when deploying an AAS remotely to a central
server (cf. Section 3.1.2) persistent storage to a database is not needed, we aim for a dependency-
reduced aas.basyx component and an aas.basyx.server component including all dependencies.

The aas component mainly consists of the instance factory as well as interfaces defining the
functionality to be provided by an AAS implementation48. It is important to distinguish here between
AAS interfaces (such as Aas, SubModel, Property and Operation following the AAS meta-model
[32]) and the associated (nested) builder interfaces used to build concrete instances of these
interfaces. The AAS interfaces provide access to the respective information and, to a certain degree,
also allow for modifications, in particular if the interface represents a connected, deployed AAS
element. In contrast, the builder interfaces are responsible for creating these instances, allowing for a
concise coding style and additional consistency checks, e.g., preventing typical usage errors of the
underlying AAS implementation.

Instances of the AAS interfaces can only be created through the factory and the builders, i.e., the top-
most AAS-builder can be obtained from the AasFactory and all subsequent builders for nested AAS
elements (sub-models, element collections, properties, operations) can transitively be obtained from
the actual builder. Specific extensions to the typical AAS interfaces are the deployment support
(DeploymentBuilder), the remote protocol support (InvocablesCreator and
ProtocolServiceBuilder) as well as the AasVisitor. The DeploymentBuilder aims at
realizing and encapsulating typical deployment recipes, such as local or remote AAS deployment. The
protocol support encapsulates a specific remote communication protocol to implement the
dynamic/active behavior of an AAS. This builder creates function objects delegating the respective
operation to the protocol. The function objects can be attached through the aas interface to the
underlying AAS implementation. This can happen in a straightforward manner if an AAS has direct
access to an implementing instance such as a service. However, if AAS and implementation must be
separated, e.g., due to remote deployment of the AAS or due to a programming language/process
border (e.g., Python for AI services), a (remote) communication protocol must be utilized. As several
options for such protocols do exist, e.g., REST, RMI, GRPC, etc., it is not possible just to provide a single
protocol abstraction rather than to allow for openness. Therefore, we offer a pair of interfaces, the
InvocablesCreator being responsible for the function objects to be attached to an AAS (this is just
a kind of factory rather than a builder) and a related ProtocolServiceBuilder being responsible
for building up a server/service instance and registering the actual implementation functions for the
function objects. Ultimately, the AasFactory is responsible for creating a matching pair of instances
for a given protocol.

In addition, the abstraction encompasses an AASVisitor. As usual, a Visitor allows traversing a data
structure in an extensible, polymorphic manner (based on inversion of control) without knowledge
about the structure, need for explicit alternatives over types or type casting. Moreover, visitor
instances can be applied to any element in the data structure and, thus, perform a partial traversal.
Further, there is usually not a single Visitor implementation rather than many, each one for a specific
purpose. Besides the interface, we provide the PrintVisitor which emits the structure of the AAS
in textual form in particular for testing/debugging. Further, we provide, as usual, an empty basic
implementation, the BaseAasVisitor to be used by visitor implementations to handle changes to

48 We follow a pragmatic and agile approach here, i.e., we follow the meta-model in [32], but we do not aim to
be complete from the very beginning. We add interfaces and operations only on usage demand. Ultimately, at
latest at the end of the IIP-Ecosphere project, the abstraction shall be complete with respect to the most
recent, implemented version of the AAS specification.

IIP-Ecosphere Platform Handbook
43

the visitor interfaces in a default manner, i.e., further AAS elements will then not per se lead to a
compile error.

Along with the further evolution of the AAS concept, more and more standardized AAS structures will
be defined. One such structure is the Technical Data Submodel [2] including manufacturer information,
nameplate etc. As an example, the AAS abstraction layer takes up the [2] submodel specification and
allows to create and read such structures in terms of specialized submodel and submodel element
collection types. This structure is not shown in Figure 25.

A concrete implementation of the AAS abstraction provides an AAS factory. Except for the visitors,
which are based on the abstraction rather than a concrete implementation and, thus, can directly be
created on purpose by client code, instances of all other concepts can be obtained directly or indirectly
from the AASFactory. Concrete AAS factories are supposed to announce/register themselves via the
AasFactoryDescriptor and the Java service loader mechanism49, so that just the presence of an
AAS implementation on the Java classpath enables the abstract AasFactory to create concrete
instances.

The default implementation of the AAS abstraction is based on Eclipse BaSyx. The aas.basyx
component implements the interfaces, typically in terms of adapter/wrapper50 classes, i.e., classes that
delegate the actual operations to the underlying BaSyx implementation. As remote communication
protocol, the default implementation offers an extensible form of the BaSyx Virtual Automation Bus
(VAB, in variants TCP, HTTP and HTTPS) through the VabIipInvocablesCreator and the
VabIipOperationsProvider. Further, external protocols may be added using the
ProtocolCreator (and the related JSL ProtocolDescriptor, both not shown in Figure 25). The
default implementation in aas.basyx provides a mapping of the Technical Data Submodel [2] to the
underlying BaSyx implementation of [2].

In an installation setting, various kinds of AAS servers may be used, e.g., in-memory servers on edge
devices or servers with persistent storage of the AAS on a central IT side. However, the different forms
of servers imply different dependencies, in particular, database dependencies may not be feasible in
resource limited environments such as edge devices as already mentioned above. Thus,
implementations of the AAS abstraction are encouraged to reduce dependencies where ever possible
to allow for execution in all environments. For IT side installations, all dependencies may have to be
included to allow, e.g., for persistent database storage. For this purpose, we separate the AAS
implementation into two parts, the (client-side) AAS for all environments and the server side. To
announce the server side, we introduce the AasServerRecipeDescriptor (not shown in Figure
25), which, if present, hooks the server component with all its dependencies into the AASFactory
and makes such servers transparently available.

The iip-aas component paves the way that AAS (sub-models) for the different IIP-Ecosphere
platform layers can be collected and deployed as a single representation of a running resource
depending on a given deployment mode. Therefore, the iip-aas component defines the
AasContributor interface and the AasPartRegistry. The AasContributor is a plugin interface
supposed to be implemented by upper platform layers to create the respective AAS (sub-model) and
to register the implementing function objects with the protocol builders. An AasContributor can
indicate whether prerequisites are met so that its AAS can be created. Instances of AasContributor
are supposed to be announced/registered via the JSL mechanism. The AasPartRegistry provides
access to those plugin instances and, e.g., triggers the creation and the deployment of an entire AAS
for an installation. Thus, interfaces marked with the stereotype «AAS» (from the IIP-Ecosphere profile,

49 https://docs.oracle.com/javase/8/docs/api/java/util/ServiceLoader.html
50 https://en.wikipedia.org/wiki/Adapter_pattern

https://docs.oracle.com/javase/8/docs/api/java/util/ServiceLoader.html
https://en.wikipedia.org/wiki/Adapter_pattern

44
IIP-Ecosphere Platform Handbook

see Section 3.4) are supposed to be implementations of the AasContributor interface and to
announce themselves via JSL.

As the current specification of AAS and, thus, BaSyx do not contain mechanisms for user-defined types,
we will focus on simple property types such as strings in our AAS. Where possible, we also avoid
complex types in operation parameters and, if required, use JSON strings to transport multiple values,
e.g., objects, arrays or maps. In the future, AAS may allow for modeling such types and BaSyx may
provide implicit mechanisms to handle complex objects. Thus, to simplify later code revisions of the
IIP-Ecosphere platform and to avoid conflicts with, e.g., annotation-based JSON libraries, we decided
to provide some support for JSON marshalling using boilerplate code in the iip-aas component, e.g.,
to handle return values and alternative exceptions for operation calls. Similarly, we did not identify
mechanisms to programmatically resolve AAS references in BaSyx, we decided to represent references
as Strings carrying the name of an element in a submodel element collection denoted by dependencies
or associations or as URLs.

Moreover, iip-aas provides common classes to build up parts and pieces of platform AAS instances
according to IIP-Ecosphere AAS conventions. Examples are the setup of AAS information via JAML, the
resolution of images, e.g., for AAS nameplates, or the ClassUtility which turns Java meta-classes
into AAS elements and modify the information about available types reflected in the Types sub-model
of the IIP-Ecosphere platform AAS. Akin, iip-aas implements basic forms of AAS-client, i.e.,
classes that conveniently wrap access to certain AAS parts such as operations or properties. Subclasses
shall use or refine the basic functionality to implement concrete accessors, e.g., operation execution.

As far as possible, we aim for a transparent AAS integration. Therefore, platform code must utilize the
abstraction for the aforementioned reasons. If AAS functionality is not available, new AAS concepts
become available or the underlying implementation changes significantly, a revised/extended AAS
abstraction may be required, which, in turn, may require changes to existing platform code.

3.5.2 Network Management Support
In addition to the AAS abstraction, the support layer also provides basic network management
functionality, in particular for TCP port negotiation. The network manager supports two modes, based
on registered and dynamic/free ports. Both modes are relying on a self-selected key for the respective
port, e.g., representing a service or a channel/topic identifier. Central services can register themselves
with a platform-wide known key. Dynamic services are supported by assigning/reserving free
(ephemeral) ports. Furthermore, the network management support can record the number of
instances accessing a certain service represented by it’s known key. This is in particular important if
services shall be started/stopped dependent on the actual use, i.e., if no further instance is using a
service it can be stopped and the resources can be freed.

Network managers can be stacked, i.e., a parent network manager can contain (more) centrally
registered addresses (e.g., for overarching communication brokers) while local managers focus on local
(ephemeral) ports. The NetworkManagerAas realizes the active AAS frontend network manager
instances, in particular for a central platform manager instance. The NetworkManagerAasClient
implements an AAS-based access to the NetworkManagerAas, i.e., to allow implementing
components to access a central network manager, also through stacking. It is important to note that
not all components rather than installations may require a network manager. Further, not all network
managers, in particular not local instances on (edge) resources must be exhibited through an AAS.

BaSyx provides some support for Transport Layer Security (TLS), e.g. HTTPS mentioned above. These
mechanisms are available through the support layer and taken up by the platform. However, full use
would require key exchanges, e.g., as part of device or identity management, which is still in
development. Moreover, the platform provides TLS support for the transport layer (cf. Section 3.6).

IIP-Ecosphere Platform Handbook
45

For this release, we performed an upgrade of BaSyx from version 1.0.3 used in the last platform release
to version 1.3.0. Almost all modifications that were required for this upgrade51 took place within the
support component of the IIP-Ecosphere platform. Moreover, the available test cases for the support
layer sufficiently covered the functionality and indicated semantic changes in BaSyx, e.g., how to
declare operation parameters, which could be solved by some additional mapping code in the support
layer.

3.5.3 Lifecycle Support
A further basic capability is to start up components in a uniform but extensible manner. This is
particularly important as individual components may rely on different technology imposing different
technological requirements on the startup process. Moreover, it supports the transparent realization
of optional and alternative platform components. Therefore, the Support Layer defines the
LifecycleDescriptor (not shown in in Figure 25), allowing components to do the necessary
startup/shutdown operations, declare a startup level (priority) and, if required, stop a component. A
LifecycleDescriptor defines a priority (akin to startup levels in Linux) and may indicates, whether
it desires to terminate the execution of the containing platform instance upon a certain event or
condition. A LifecycleDescriptor announces itself through JSL and is taken up by the
LifecylceHandler. The LifecylceHandler provides generic startup classes for all components,
e.g., with or without the ability to terminate the platform instance, which trigger a respective
processing of the lifecycle descriptors.

In some cases, components may conflict in their dependencies or behavior. Then, one solution could
be to run only parts of a component lifecycle and to execute these parts in an own JVM. Such partial
lifecycles can be defined in the platform in terms of LifecycleProfile, JLS descriptors that specify
a set of LifecycleDescriptor instances to be executed when the name of the profile is stated as
command line parameter of the component startup. These profiles also allow for virtualization of such
partial component lifecycles.

3.5.4 System-level Monitoring Support
System-level properties such as number of CPUs or GPUs, their actual load or temperature are
particulary difficult to access in Java. Moreover, edge devices may have vendor specific interfaces
including OPC UA or MQTT to access such information. To enable the generic use of such information,
also in the platform AAS, we included the required basic access functionality as an interface and a
rather simple default implementation into the support layer. Specific implementations can be added
via JSL. One example is support.dfltSysMetrics, which relies on JSensors52. One alternative could
be OSHI53.

The IIP-Ecosphere platform includes an optional system-level monitoring plugin for Phoenix Contact
PLCnext, which accesses some system properties like CPU or board/case temperature via
GRPC/protobuf provided by PLCnext (starting with firmware released in 2022).

3.5.5 Identity Support
Some mechanisms in the platform require a certain form of authentication, ranging from anonymous
over username/password up to X509 tokens54, keystores with certificates or (public) cryptographic

51 Some modifications also affected the Python implementations of the VAB protocol in the service
environments (cf. Section 3.7.3). As the support layer (currently) does not contain multi-language
implementations of the VAB, this separation is intended and also the modifications there were expected and
indicated during test case execution.
52 https://github.com/profesorfalken/jSensors
53 https://github.com/oshi/oshi
54 Originally, a generic form of identity tokens was provided by the connectors component, mainly for OPC UA.
This now became a more general mechanism of the platform.

https://github.com/profesorfalken/jSensors
https://github.com/oshi/oshi

46
IIP-Ecosphere Platform Handbook

keys as well as SSL key managers. However, storing such information in the configuration model or
even in code is not acceptable. Therefore, the platform provides an IdentityStore with a pluggable
implementation. By default, a Yaml file with the identities is read either from the classpath, a file from
the home directory of the actual process or a file determined by an environment variable. Moreover,
advanced and sophisticated implementations for central identity and authentication token
management can be plugged in here. The configuration of components shall refer to the logical name
of the authentication token, which is provided (if known) by the identity store. To allow for more
flexibility and to ease identity management, several default names, e.g., starting with a specific device
name, if not found, the name of a device group, e.g., edges or servers, etc. will be used.

3.5.6 Resource Support
In many cases, programs rely on file resources that must be resolved and loaded at runtime. In Java,
this usually happens via the class loader, i.e., Java archive files (Jars) contain such resource files and
the Java class loading mechanism provides access to them. However, besides the standard path
starting at the root of the archive file, in some cases the packaging of JARs may dictate further paths,
e.g., to so called FAT Jars (Java archives in which dependencies are included, partially dissolved into
individual files or folders). In the IIP-Ecosphere platform, this can happen when services are packaged
into service artifacts. As an unknown number of additional resolution strategies may be required, the
support layer provides a class called ResourceLoader, which allows registering additional
ResourceResolver instances directly or via JSL. All platform components are encouraged to utilize
the ResourceLoader or to contribute required resolution strategies.

3.5.7 Semantic Id Resolution Support
One specific ability of AAS is to mark used elements with a so-called semantic identifier, i.e., a
reference to a dictionary detailing what is contained in a certain AAS element. With increasing use of
semantic identifiers in the platform AAS, also a resolution of these identifiers becomes important, e.g.,
on the user interface to display the associated units and descriptions. Of course, within the data
processing, also data transformation rules as defined, e.g., by ECLASS55 could be used. Besides ECLASS
IRDI identifiers, also URL-like IRI are used, e.g., in the specifications of AAS standards. A semantic id
resolution mechanism must take care of all those identifiers, potentially taking into account
mechanisms implemented by the AAS framework as well as potentially commercial licenses on
catalogs and web services as they apply for ECLASS.

The resolution support of the IIP-Ecosphere platform works as follows. A generic semantic id resolution
interface provides access to the resolution mechanism. The result of a successful resolution is inspired
by the ECLASS dictionary and returns currently the version, the revision, and, in multiple languages,
the name, structure name and a free text description of the respective concept. The resolution is done
by JSL-based resolution plugins, for which we define two simple standard plugins, both based on a local
Yaml-based catalog file: a small excerpt of the ECLASS catalog for the concepts that we use and an
excerpt of the AAS IRI definitions from [43]. The IIP-Ecosphere platform also includes an optional
resolver performing online resolution through the ECLASS web service relying on the identity
management (Section 3.5.5) to access a required authentication certificate. Similarly, a BaSyx-based
resolution can easily be realized in the BaSyx component by defining the respective resolver
implementation as respective, additional JSL service.

In addition to the two standard plugins based on local catalogues, the IIP-Ecosphere platform also
encompasses a semantic resolution plugin based on the ECLASS web service. This web service is
commercial and only available with a respective account and security certificates, which are not

55 https://eclass.eu/ IIP-Ecosphere is grateful for the support of Eclass and the ability to us the Eclass catalogue
within IIP-Ecosphere in the context of a research license.

https://eclass.eu/

IIP-Ecosphere Platform Handbook
47

included into the source code/binaries of the ECLASS semantic id resolver. This information can be
added through the identity support of the platform (cf. Section 3.5.5).

The platform AAS submodel defines an operation to resolve semantic ids, realized by the resolver
mechanism discussed above. This allows the UI to request any occurring semantic id and, if resolvable,
to use the results to describe individual elements, currently for two languages supported by the built-
in catalogs, namely German and English.

3.5.8 Task Tracking Support
For longer running tasks, such as service deployments, tracking and reporting the state of the
execution to the user is required, e.g., on a user interface. However, the IIP-Ecosphere platform is a
distributed system, i.e., task information must be passed among the executing resources in a manner,
that multiple resources can collaborate on the same task. For this purpose, the IIP-Ecosphere platform
provides a thread-based task tracking mechanism, which is integrated into the operation execution
support for AAS operations.

For modeling AAS operations, we follow the convention, that usual AAS operations are not tracked at
all and behave like a synchronous call. Top-level operations that shall be tracked are named with the
name suffix “Async”, run in parallel and return their task identification immediately. Lower level
operations that can be tracked are marked with the name suffix “ByTask”, offer an additional
parameter “taskId” and use the task id for reporting their status. Status reporting is defined as part of
the transport layer.

3.5.9 AAS Creation and Usage Pattern
For using the support component in an upstream component or layer, we suggest the creation and
usage/design pattern illustrated in Figure 26. As stated in the previous sections, we are using the AAS
abstraction (support.aas) as a frontend, i.e., through the AasFactory without direct dependencies
to the default implementation of the AAS abstraction (support.aas.basyx) hiding BaSxy
(org.eclipse.basyx). The IIP-Ecosphere-specific AAS library (support.aas.iip-aas) provides
helpful classes and mechanisms that we use in this pattern.

Figure 26: AAS creation and usage pattern involving support layer classes and mechanisms.

To illustrate the pattern, some classes of support.aas.iip-aas as well as some classes of a
prototypical component providing an own AAS (component C) are depicted in Figure 26. The AAS of C
is implemented in CAas (typically using the name of the component or a suitable shortform as prefix
of the class names following Java and platform conventions for the naming, e.g., C could be
ecsRuntime, the AAS could be in EcsAas). CAas uses the AasFactory to create sub-models,
properties and operations. However, to be part of the IIP-Ecosphere platform AAS, CAas is also an

support.aas support.aas.basyx

support.aas.iip-aas

«interface»
AasContributor

component C

CAas

AasPartRegistry* AbstractAasLifecycleDescriptor

CAasClient

SubmodelClient

SubmodelElementsCollectionClient

«interface»
CClient

CLifecycleDescriptor

META-INF/
services

«create»

«lists»

AasFactory

«lists»

48
IIP-Ecosphere Platform Handbook

AasContributor, which defines methods for creating a sub-model (for a given AAS) and for hooking into
the AAS implementation server using the recipe interfaces of the IIP-Ecosphere AAS abstraction. To
become active, CAas (or the AasContributor, respectively) are mentioned as JSL service in the
services directory and, through JSL, become automatically active in the AasPartRegistry (which
calls its AasContributor instances appropriately). However, to have a single, central AAS server and
to hook the individual parts into that server with the right setup information, we need a lifecycle
descriptor. A basic form, that creates also the AAS platform server instances if needed, is provided in
terms of the AbstractAasLifecycleDescriptor, which is specialized in component C in terms of
the CLifecycleDescriptor. To become active, the CLifecycleDescriptor must be listed as
JSL service in the services folder. In this combination, the AAS of component C is created at the right
point in time and automatically deployed to or registered with (as stated in the respective setup) the
platform AAS. During this creation process, also further AAS may be created, e.g., to represent a device
AAS including vendor information [43, 2].

For using the information in the AAS during the execution of other platform components, one could
now request the platform AAS instance from the AasPartRegistry and operate on it through the
abstraction interfaces provided by support.aas, e.g., to find a certain operation and to call it.
However, if all platform parts do that directly, evolving the structure of individual sub-models becomes
nearly impossible (or simply a mess). Thus, each component defining a part of the IIP-Ecosphere
platform AAS shall also provide a client implementation. For this purpose, support.aas.iip-aas
provides two typical basic clients, namely the AbstractSubmodelClient (for properties and
operations defined on sub-model level) and the AbstractSubmodelElementsCollectionClient
(for an element located in a submodel elements collection in a certain sub-model). The component
providing the client shall now define an interface for the respective operations (CClient) and
implement that interface in terms of either a specialized AbstractSubmodelClient or an
AbstractSubmodelElementsCollectionClient, in Figure 26 shown as CAasClient.
Components that want to access the AAS, shall use the client interface and the concrete client
implementation. While the CClient interface does not seem to be required here, it helps testing
against mocked instances, e.g., in the command interface of the platform.

3.6 Transport and Connection Layer
The Transport and Connection Layer is responsible for connecting resources among each other, with a
platform installation on a central IT or even with external cloud environments. We start off
summarizing the requirements for the Transport Layer in Section 3.6.1. Then we will turn to the two
interrelated components in this layer, the Transport Component (Section 3.6.2) and the Connectors
Component (Section 3.6.3). Finally, in Section 3.6.4, we will discuss the realization of the requirements
by the two components.

3.6.1 Requirements
In the requirements collection [13], the transport layer is particularly characterized by the
requirements summarized in Table 5:

Table 5: Specific requirements from [13] for the Transport and Connection layer (not repeating the general requirements in
Table 2 and Table 3).

Requirement Summary
R13 Connectivity to other actors
R13a Connectivity with I4.0 devices
R13b Connectivity with I4.0 platforms
R13c Connectivity with other IIP-Ecosphere platform instances
R14 Open and flexible connectors
R14a At least OPC-UA and MQTT connectors

IIP-Ecosphere Platform Handbook
49

Requirement Summary
R14b TCP-IP support
R14c Bluetooth LE support
R15 Connectors shall be as uniform as possible
R16 Integration of connectors shall be open and flexible
R17 Potential distribution of connectors to various devices
R17b Management of connectors by platform
R17c Connectors shall be parameterizable
R18 Securing connectors
R19 Use of a minimum set of internal data formats, examples mentioned in R19a, R19b
R19a Example input formats (southbound)
R19b Example input formats (northbound)
R19c Restful APIs with JSON/XML
R19d Example output formats (northbound)
R19e Output data clocked in 5 second intervals
R19f Data format conversion
R19g Mechanisms to manipulate data
R20 Application-specific data paths (through the configuration model)
R21 Low impact on data throughput
R22 Platform data throughput of 500 Gbytes per year
R28 Machine pulse of 8 ms
R38 Appropriate authorization mechanism
R40 Role-based access control and TLS
R44 IDS-based connectors (including their security profile)
R49 Appropriate mechanisms to ensure data transfer and data sharing concerning

principles of data protection such as legitimated purpose
R66 Pseudonymization and anonymization of data (transferred or shared)

Requirement R19c REST-APIs is not relevant for this layer as service and layer interfaces are expressed
through AAS, which in the default implementation form a REST-API. However, JSON and XML
mentioned in R19c may be potential wire formats for data transport. Further, as the Transport and
Connection Layer shall support (complex) data types in generic manner, the examples mentioned in
the explanations of R19a, R19b and R19d in [13] are covered generically. Regarding the general
platform requirements in Table 2, in particular, R1, R2, R5, R8 and R10 apply to the Transport and
Connection Layer. It is important to note that the realization of (sub-)requirements referring to the
configuration model such as R17a or R20 will be discussed in Sections 3.11 and 4, but must be prepared
already in the Transport and Connection layer.

With respect to the soft-realtime requirement R10, a stream-based data processing approach seems
to be a feasible solution. This impression is supported by the successful application of such approaches
in the Big Data domain [28] and the observation that several I4.0 platforms with (soft-)realtime
promises typically rely on some form of stream-processing [35]. However, the streaming approach
shall not impose unnecessary limitations to the data paths so that, e.g., (AI-)processors can operate
with multiple in- and outputs or streams returning to the source (machine connector or underlying
platform) can be realized.

3.6.2 Transport Component
At a glance, a Transport Component may appear to be superfluous if we build the platform on the
capabilities of the AAS approach. We will outline our rationales first and then turn to the design of the
Transport Component.

50
IIP-Ecosphere Platform Handbook

Initial experiments [39] with Docker containers and AAS (using BaSyx version as of July 202056) on
Raspberry Pi 357 as well as on Phoenix Contact PLCnext edge devices showed that the typical response
time of operations without computational load is around 23 ms. In contrast, property value accesses
can be executed at 4-10 ms. For comparison, plain Java Remote Method Invocations operate in this
setup at 2-4 ms. Further investigations of this discrepancy indicated that utilized components from the
BaSyx examples represent one operation as three internal REST calls, where two of them are required
for managing internal functionality. Using lower level BaSyx components, e.g., through the
InvocablesCreator and ProtocolServiceBuilder discussed in Section 3.5, operation calls can
be executed at the same response time as property accesses, i.e., around 4-10 ms. This seems to be
promising for R10 and, in particular, the 8 ms machine pulse mentioned in R28. However, the
measured times are not suitable for (soft-)realtime processing or software-based stream-processing.

Consequently, we will use AAS primarily as control interface for the infrastructure layers and the
platform services (R7). For cross-linking services in terms of data streams we will rely on a dedicated
streaming approach, as to our very knowledge so far no concepts are provided for streamed data
among multiple AAS58. In such a streaming setting, the integration of services (potentially implemented
in different programming languages, R113a) could be done via AAS (not preferable as argued above)
or through a specific streaming data interface. In the latter case, the service AAS is used to describe
the streamed data types and the data connectors38 but not for the actual streaming transport. While
AAS may be preferable for uniformity (R7), specific streaming interfaces will allow for better
performance (as we will detail in Section 3.6.2.3).

We structure this section into a brief review of related streaming approaches leading to some
technology candidates, the design of the component and its (initial) technical validation.

3.6.2.1 Related Approaches
We discuss now approaches in the field of stream-processing, their relation to I4.0 and whether they
could be useful for realizing the IIP-Ecosphere platform. As often certain protocols are required in I4.0
settings, we further discuss protocol realization candidates.

Regarding stream processing, we briefly review now related approaches, in particular stream
processors (with own resource management approach) as well as stream processing libraries (focusing
more on the stream-based transport). It is important to make this distinction, as the dynamic
deployment and the adaptation capabilities foreseen for the IIP-Ecosphere platform shall integrate
with rather than contradict automated management capabilities of the selected stream processing
approach. From previous experience we know, that modifying a stream processor such as Apache
Storm to introduce desired adaptation capabilities can be a tedious work that, if not accepted by the
developing company, will not scale/evolve with future developments of the stream processor. Besides
technical capabilities, important aspects are R13 (utilized transport protocols), R14 (openness and
flexibility, in particular for connectors, transport protocols and formats) as well as availability and
licenses (R5) of the individual approaches.

56 At at that time there were no version-based releases of BaSyx.
57 Raspberry Pi is frequently used as IoT mockup device in literature and practice, e.g. for cost-effective
showcases or even in experimental evaluations.
58 AAS are designed to describe production assets along their lifetime rather than software components or
even soft-realtime data services. Thus, this statement shall not be considered as critics rather than a potential
limitation of AAS that has to be mitigated in IIP-Ecosphere by a different solution or additional technical means.

IIP-Ecosphere Platform Handbook
51

Table 6: Selected scientific streaming processing approaches (related to IoT)

Name Mgt. Based on Protocols Edge Availability License Latest
EdgeWise
[16]

Yes Apache Storm Pi3 Yes APL2.0 2016

Frontier [29] Yes “WiFi” Pi - ? ?
[7] Yes Apache NiFi Pi - ? ?
Dart [6] Yes REST,

JSON
Pi - ? ?

PESP [20] Yes RabbitMQ - ? ?
VISP [19] Yes Spring cloud stack,

RabbitMQ
AMQP,
MQTT

 Yes APL2.0 2018

Esc [34] Yes - ? ?

Table 6 compares related approaches that can be found in literature on stream processing for edge
devices or IoT. Three of the approaches were evaluated on Raspberry Pi devices (mocking IoT devices,
typically in rather different IoT application settings). For two of the approaches the implementation is
available, and only [19] utilizes IoT protocols (as provided by the underlying technology). All of the
approaches provide more or less (automated) management/deployment functionality. Although
potentially interesting in an evaluation context, we see existing management functionality as a
potential risk as they usually are designed for a certain setting and integrating, interfacing or in the
extreme case replacing such functionality may lead to unforeseen complications.

Table 7 summarizes a set of recent stream processing frameworks and libraries that were identified
through a web search (without specific focus on IoT/edge). Not included are commercial approaches
like Grovestreams, Hazelcast, or Amazon Kinesis that were also part of the result set as R1, R5 and R6
in [13] express a clear direction towards Open Source.

Table 7 consists of two parts, the upper part for IoT related approaches and the lower part for generic
stream processing approaches. In these approaches, the presence of management functionality
correlates with the nature of a stream processor rather than a streaming library. Moreover, stream
processors are usually realized as a complete stack, usually based on a cluster-based installation, e.g.
with centralized servers such as Apache Zookeeper or a resource manager. Within the IT server
installation of an IoT platform, such setups may appear to be feasible. However, we expect serious
limitations for devices close to the production / OT59 side. It is worth mentioning that some sources
indicate that approaches like Apache Flink try to remove resource consuming central services like
Apache Zookeeper and even consider the realization of specific versions for edge devices (e.g., a 2021
release of Flink shall include edge support). From a research perspective, e.g., in [16], such widely used
stream processors are also criticized for their inflexible adherence to the One-Worker-Per-Operation-
Architecture (OWPOA) as this design loses efficient processing scheduling opportunities by relying on
the underlying operating system scheduler. A positive trend seems to be that more and more security
features are built into the frameworks. Examples of such security features and a potential
methodology to integrate them in a framework—especially from the early phases of framework
design—is introduced in Section 3.9. This is in contrast to the initial tendency of, e.g. Apache Storm, to
sacrifice security and encryption for throughput. Except for approaches dedicated to the IoT domain,
full-stack frameworks typically realize own (usually fixed) transport protocols and, if at all, realize own

59 As discussed in [13], OT refers to Operation Technology, i.e., the control and monitoring of production
machines, which typically operate under hard-realtime conditions. In contrast, IT (Information Technology)
such as the IIP-Ecosphere platform typically can only operate under soft-realtime constraints. Nowadays, edge
devices may bridge OT and IT, e.g., in terms of separated, but integrated hard- and soft-realtime cores,
potentially controlled by different operating systems/software.

52
IIP-Ecosphere Platform Handbook

internal interfacing concepts, e.g., based on REST-APIs. Thus, as far as we can see, (flexible,
exchangeable) IoT-based transport protocols are rather uncommon and, typically, AAS is not
considered for interfaces at all.

Table 7: Selected stream processing frameworks and libraries (*=incubating, vispl = visual programming language)

Name Mgt. Language Protocols Env License Latest Comment
Apache
Edgent

Yes Java MQTT, … edge APL2.0 2017* Own language

Apache
Streampipes

No Java,
Typescript

MQTT,
OPCUA,
ROS, …

IoT APL2.0 2020* ML support,
Kafka,
container, vispl

Benthos No Go AMQP,
MQTT

 MIT 2020 Own language

Eclipse IoT
Streamsheets

Yes JavaScript MQTT,
OPCUA,
…

IoT EPL2.0 2020 Spreadsheets,
Docker

Eclipse Kura Yes Java MQTT,
OPC-UA,
…

IoT/edge EPL1.0 2020 OSGi, Docker,
vispl, stack

EdgeX
Foundry

Yes Go, C MQTT,
OPC-UA,
…

IoT/edge APL2.0 2020 REST, Stack

Flogo Yes Golang IoT/edge,
Cluster

BSD3-
Clause

2019 TensorFlow,
zero code

Sensorbee No Go IoT MIT 2017 ML integration,
own language,
documentation

Akka Yes Scala,
Java

HTTP Cluster APL2.0 2020 Actors

Apache Apex Yes Java Hadoop
RPC

Cluster APL2.0 2018 YARN

Apache
Beam

Yes Java,
Python,
Go

 Flink, etc.
cluster

APL2.0 2020 Requires
processing
cluster

Apache Flink Yes Java,
Scala

 Cluster APL2.0 2020 Zookeeper,
edge 2021?

Apache
Flume

Yes Java Avro,
protobuf

Cluster APL2.0 2019 Zookeeper, big
footprint

Apache
Gearpump

Yes Scala

 APL2.0 2019* Storm/Samoa
compatible,
YARN

Apache Kafka Yes Scala,
Java

 Cluster APL2.0 2020 Zookeeper

Apache Kafka
Streams

Yes Java Cluster APL2.0 2020 Requires Kafka

Apache NiFi Yes Java Cluster APL2.0 2020 FlowFiles,
REST, vispl

Apache
Pulsar

Yes Java Cluster APL2.0 2020 Brokers,
Bookkeeper,
Zookeeper

Apache
Samza

Yes Scala,
Java

 Cluster APL2.0 2019 YARN, Kafka

IIP-Ecosphere Platform Handbook
53

Name Mgt. Language Protocols Env License Latest Comment
Apache Spark Yes Scala Spark

RPC
Cluster APL2.0 2020 shared

memory
Apache
Storm

Yes Clojure,
Java

 Cluster APL2.0 2020 Zookeeper

Hortonworks
Streamline

No Java,
JavaScript

REST APL2.0 2018 Documentation

Spring Cloud
Stream

(No) Java open* APL2.0 2019 Depends on
Spring

StreamFlow Yes Java Kafka,
Storm
cluster

APL2.0 2015 Vispl for Kafka,
Storm

Streamtz No Python Continuum 2020 Pandas, cuDF

Some of the approaches (Apache Streampipes, Sensorbee, Streamtz, Flogo) listed in Table 7 provide
Machine Learning (ML) support/integration while other approaches already realize concepts for the
integration of programs in multiple languages, e.g., Apache Storm and Apache Spark for Python.
Approaches like Apache Streampipes, Eclipse Kura, Flogo, Apache NiFi, or Streamflow take up the trend
towards visual programming, low code or even no code (as also identified for some I4.0 platforms in
[35]). Although convenient, an integration of configuration modeling with existing visual programming
languages for the orchestration of services may be a risky approach.

Summarizing these findings, only few approaches remain as candidates for the realization of streaming
in the Transport Layer, which may involve edge devices, servers and even clouds. This (as well as license
and normative considerations) requires a flexible selection of the transport protocol (R14) and the wire
format. Moreover, the requirement of using AAS wherever possible (R7) or at least to allow for an
exchange of the communication protocol excludes almost all stream processing frameworks (of course
not from comparative evaluation settings). Needless to say that a candidate approach shall be able to
handle synchronous (one input data item is related to one or no output item) and asynchronous (inputs
and outputs can be decoupled) processing of data items as well as resources local (among local
processes) and external network communication, e.g., for input and output.

As a result of these filter criteria, Apache Streampipes, Sensorbee, Hortonworks Streamline or Spring
Cloud Stream appear to be feasible candidates. However, initial experiments indicated serious
problems with Sensorbee and Hortonworks Streamline ranging from incomprehensible or non-existing
documentation to problems when executing the respective examples. Apache Streampipes (APL2.0)
ships with interesting features, several kinds of generic connectors, exchangeable transport protocol
and wiring format although it is still considered to be in incubation state. As alternative we see Spring
Cloud Stream60 (APL 2.0), which allows exchanging the transport protocols for individual in/out-bound
streams, supports user-defined payload wire formats, flexible exchange of communication protocols,
network properties per data path among processors, implicit payload conversion (also through our
serializer mechanism) and dynamic stream re-routing at runtime. Moreover, Spring Cloud Stream was
successfully applied in [19].

60 https://spring.io/projects/spring-cloud-stream

https://spring.io/projects/spring-cloud-stream

54
IIP-Ecosphere Platform Handbook

Figure 27: Transport Component overview (comments partially cropped)

IIP-Ecosphere Platform Handbook
55

However, it is important that we want to integrate the streaming approach with the connectors and
the ML processors in a model-based manner similar to our work for Apache Storm in [9], here with an
even stricter focus on isolating the utilized streaming approach. We believe that relying on glue code
generation allows us to replace (within limits, e.g., always assuming a data flow graph with some kind
of source, processor and sink) the stream approach. Thus, we see Spring Cloud Stream as a good and
justified initial candidate for the reasons stated above as well as because it ships with several transport
protocols including protocols for public clouds (although it also relies on a large dependency tree
particularly induced by the Spring Framework61). In later stages of the project, we may take Apache
Streampipes or an edge-enabled version of Apache Flink into account.

Regarding IoT protocols, several implementations are available, in particular from different projects of
the Eclipse.IoT62 ecosystem (provided under compatible licenses for IIP-Ecosphere). While some
projects focus on specific protocols, e.g., Eclipse Paho63 on MQTT, others already integrate various
protocols such as Eclipse Hono64. Although such integrations may be an interesting foundation, they
often rely on specific assumptions, e.g., Eclipse Hono collects binary payload from different protocols
and forwards the payload to a fixed default protocol (MQTT). While such approaches may provide
access to different low-level protocols or machine connectors (cf. Section 3.7), they may also introduce
limitations due to their design choices or do not provide mechanisms for turning such generic
implementations into application specific solutions, e.g., through application-specific data translators.
Moreover, some transport protocols are currently not applicable, e.g., we currently do not consider
OPC UA PubSub due to a lack of feasible implementations, where Eclipse Milo65 currently does not
support the required OPC UA version.

3.6.2.2 Design
Figure 27 depicts an overview of the packages and (top-level) classes in the Transport component. The
Transport component is intended to be deployable as re-usable component rather than to act as a
standalone communication container. The main concepts in this layer are:

• The TransportConnector allowing to bind transport protocols into the infrastructure. A
transport connector allows sending/receiving of data on (virtual) channels. As receiving usually
happens in asynchronous manner, implementations that rely on a TransportConnector are
informed via the ReceptionCallback about received data.

• The actual wire format to be used for transport may differ from protocol to protocol. For
example, low level transport protocols such as MQTT or AMQP support arbitrary binary
payloads (might be with individual size restrictions) while higher level protocols such as OPC
pub/sub define their own payload format. However, to be open and flexible with respect to
the wire format and to utilize a minimum of data formats within the platform (R19), we foresee
a mechanism for data transcoding. For performance reasons, data transcoding shall happen
only when actually needed. Specifically, for binary wire formats, the Serializer transcodes
programming language objects into a binary representation and back. More generically, a
Serializer is a TypeTranslator that can be applied also in other situations, e.g., data
processing. In turn, TypeTranslator is a combination of InputTypeTranslator and

61 Native executables are in experimental development and may help optimizing the deployment/performance:
https://www.heise.de/news/Java-Framework-Native-Spring-Anwendungen-laufen-ohne-die-JVM-
5078681.html
62 https://iot.eclipse.org/
63 https://projects.eclipse.org/projects/iot.paho
64 https://projects.eclipse.org/projects/iot.hono
65 https://projects.eclipse.org/projects/iot.milo

https://www.heise.de/news/Java-Framework-Native-Spring-Anwendungen-laufen-ohne-die-JVM-5078681.html
https://www.heise.de/news/Java-Framework-Native-Spring-Anwendungen-laufen-ohne-die-JVM-5078681.html
https://iot.eclipse.org/
https://projects.eclipse.org/projects/iot.paho
https://projects.eclipse.org/projects/iot.hono
https://projects.eclipse.org/projects/iot.milo

56
IIP-Ecosphere Platform Handbook

OutputTypeTranslator with cross-over template bindings66. Intentionally, we leave the
actual technical approaches for transcoding open here (some candidates are JSON, OPC-JSON
or protobuf67). The actual instances depend on the data types used in the application and are
supposed to be generated from the configuration model. While instances of
TypeTranslator are supposed to be attached where needed (and may be combined with
Serializer instances), Serializer instances shall be usable dynamically on-demand, e.g.,
for a certain TransportConnector implementation. For this purpose, we provide a
SerializerRegistry.

• The TransportConnector instances shall be available to other components of the platform
where an internal data protocol is needed. To obtain TransportConnector instances, we
define a TransportFactory and exhibit the actual protocol, the wire format and the broker
data connector(s) from the platform configuration in the Transport AAS.

• Three default protocol plugins are shipped with the IIP-Ecosphere platform, namely MQTT v3
(based on Eclipse Paho), MQTT v5 (also Eclipse Paho) as well as AMQP (based on the RabbitMQ
AMQP client). Each protocol plugin is an own alternative component, the installed ones
determine the TransportFactory behavior through a JLS descriptor. The default protocol
plugins support optional Transport Level Security (TLS) and, thus, contribute to the realization
of R40.

• The streaming approach is already relevant to the Transport Layer as transport protocols and
wire formats must be provided accordingly. However, as discussed above, the streaming
approach shall also remain exchangeable through glue code generation. Thus, the platform
provides also transport plugins for the default streaming approach (Spring Cloud Stream), the
so-called Binders, which are realized in turn through the Transport Component. A basic
spring component implements convenient mechanisms for applying Spring Cloud Stream in
IIP-Ecosphere, e.g., to add serializers to the SerializerFactory through the component
setup (in Spring application.yml, to be instantiated from the platform configuration) or to
bind the SeralizerFactory to the data conversion mechanism of Spring Cloud Stream
(SerializerMessageConverter). In addition, Spring Cloud Stream ships with generic
serialization approaches, e.g., for JSON or XML that may be used out-of-the-box. By default,
the IIP-Ecosphere platform ships with five alternative Spring Cloud Stream protocol binders for
MQTT v3 (based on Eclipse Paho and HiveMQ-client), MQTT v5 (based on Eclipse Paho and
HiveMQ-client) and AMQP (based on the RabbitMQ AMQP client). These binders support
optional Transport Level Security (TLS). Alternative binders for the same protocol are mainly
provided for performance comparison.

• The transport component defines several global platform streams (StreamNames), e.g., for
status (StatusMessage), alert (Alert) and trace (TraceRecord) messages or, as forward
declarations, for upstream components (to avoid unnecessary dependencies, cf. Table 25 in
Section 8.1). The status notification mechanism informs interested parties when containers or
services are dynamically added or removed. The notifications consist of a message data
structure, which is sent on a pre-defined transport channel. Further, status notifications may
report on their progress and may be task-related, i.e., carry a task id (cf. Section 3.5.8). As task-
based execution does not have a result, status messages may carry result or failure information
in this case. Alerts are created by monitoring components to signal abnormal or undesired

66 At a glance, TypeTranslator shall be sufficient, but in some situations, it is convenient that only the
required direction must be implemented rather than both. This is in particular true for the machine/platform
connectors, which require either direction for different types but usually not both directions. As
TypeTranslator inherits from the input/output type translators, it is also possible to use a fully-fledged
TypeTranslator in these situations.
67 https://developers.google.com/protocol-buffers

https://developers.google.com/protocol-buffers

IIP-Ecosphere Platform Handbook
57

situations. Traces make the operations of the platform visible. Moreover, the transport
component defines a global instance of the default TransportConnector and send
methods, that may queue messages until the transport connector can be utilized.

It is important to mention that further protocol binders are available for Spring Cloud Stream, e.g., for
RabbitMq, Amazon Kinesis, Google PubSub, Solace PubSub, Azure Events Hub, Apache RocketMQ.
These binders may be helpful for realizing Cloud integrations, e.g., in the Storage, Security and Data
Protection Layer. However, for uniform usage of protocols within the platform, a respective
TransportConnector shall be provided (the AMQP connector may already be used for RabbitMq).
Furthermore, it is important to mention that we do not prescribe the amount or deployment strategy
for communication servers (Brokers for the mentioned concrete protocols) within a platform
installation. The platform configuration shall provide opportunities to define multiple brokers (to be
reflected in the Transport AAS) while the broker(s) to be used shall be instantiated through the
platform configuration or the network managers into the respective deployment units. Moreover,
based on the provided mechanisms of the protocol implementations and the streaming library,
different levels of resilience or recovery can be realized, while failover to alternative broker servers
may require additional implementation work.

It is also notable that Spring Cloud Stream (with exposed web management interface) and Eclipse
BaSyx do collide on the use of Tomcat when being executed in the same JVM. Thus, also for this reason,
services shall be executed in their own JVMs and run at least in different processes than other IIP-
Ecosphere components to be introduced later, e.g., the service manager, or the ECS runtime.

3.6.2.3 Validation and Evaluation
We discuss now briefly the validation of the design and the implementation of the Transport
Component as it has a major impact on the performance of the entire platform. We start off with a
discussion of the regression testing approach and turn then to an initial performance evaluation.

The implementation of the Transport Component is subject to regression testing and continuous
integration. Testing protocol integrations requires some form of server or broker instance. Therefore,
further Open Source components are utilized so that the tests are self-contained, e.g., embeddable
protocol brokers to simulate the platform side in the respective tests. The required dependencies are
only active in testing, i.e., they are not part of a platform installation and, thus, here relaxed license or
Java version rules may apply if needed. In the regression tests, we use protobuf and a simple JSON
implementation for serialization as well as Apache HiveMq or Moquette as MQTT broker and the
Apache Qpid broker as AMQP broker.

For the Spring Cloud Stream binders we realized a simple setup validating the envisioned streaming
capabilities mentioned in Section 3.6.2.1. This is reflected in the communication setup shown in Figure
28. Ingested by a Source (the regression test), a mocked stream component (Transformer) modifies
the data (synchronously) and passes the data to the broker (representing the IIP-Ecosphere
platform/server). The communication between these instances is handled by the Protocol Binder
under test as well as the Serializer selected by the test. The Protocol Binder is based on the
respective protocol implementation and in the test bound against a corresponding embedded test
server/broker. To test also the flow back, a shortcut client based on a corresponding
TransportConnector receives the data and ingests modified data asynchronously, which now flows
through the Broker, the Serializer and the Protocol Binder back to the Source acting also as
Receiver. Combining Source and Receiver is a relevant setup, as a machine/platform connector
(to be discussed in Section 3.6.3) also ingests data and may receive information, e.g., to reconfigure an
edge device or a machine. The regression test has access to the sent/received information and, thus,
can validate the entire flow.

58
IIP-Ecosphere Platform Handbook

Figure 28: Regression testing data flow for the Transport Component.

In addition, it is also important to understand the (early) fulfillment of quality requirements. We
determine the respective properties in terms of a performance experiment. Figure 29 details the setup
of this experiment, which in fact is a variant of the regression test setup. Here, the Source produces
a stream of data items at a certain ingestion frequency. Each data item consists of at least 50 values
with repeatable characteristics (R19a). We concentrate on the payload and scope out meta-
information (R79) for now. A simple Anonymizer takes a produced data item and turns one property
(a name String) into simple pseudonyms. An “AI-Service“ inspects the data and sends for 5 received
data items one “command” back to the Source. Again, on the forward flow, the processors operate
synchronously, while the backward “command” flow is ingested asynchronously. The number of
received data items is recorded in all processors by simple monitoring probes and written in parallel
once per second to a log file. An additional stream is used to asynchronously send experiment control
commands to all involved processors, e.g., to terminate the experiment and to close the monitoring
log. Items on the experiment control stream are not recorded by the probes.

The processors in Figure 29 can be executed locally (in one process, in multiple processes) or
distributed on separated hosts as indicated in Figure 29. For the distributed execution, two brokers are
used, one in the local realm and a remote broker in the platform realm. In the local realm, we currently
use the same transport protocol/mechanism as in the platform realm, i.e., we focus at the moment on
an Inter-Process Communication (IPC) setup rather than an edge setup where at least one stream goes
to a different resource or the platform. Replacing the transport protocol, using different brokers or
exchanging the wire format for serialization may be subject to future experiments. In this experiment
we focus on the basic transport characteristics of the utilized approach.

Figure 29: Performance testing data flow for the Transport Component.

For executing the experiment, we use a selection of the binders available in the platform (HiveMq v3,
v5 with QoS AT_LEAST_ONCE, AMQP) with the setup as shown in Figure 29 and a respective (local,
embedded) broker (Apache HiveMQ 2020.4, Apache Qpid 8.0.2). As baseline, we realized a plain
network communication binder/distributed broker based on Netty68, an asynchronous networking
library, and the network port management of the platform. For the source, we use a message ingestion
rate69 per experiment and vary it from slow pace (R28) up to congestion. As wire format, we use a

68 https://netty.io/
69 The ingestion is based on the Spring Default Poller, which is controlled by a fixed delay between message
ingestion time slots (translates to a minimum ingestion rate) and a maximum number of messages ingested
within a slot (determines a maximum ingestion rate). The effective ingestion rate is within the minimum and
maximum ingestion, but subject to an internal congestion control of Spring Cloud Stream.

Source Transformer Protocol Binder Serializer Broker Shortcut-Client

Receiver

Local/Edge realm Protocol realm Platform/Broker realm
Local transport
External transport

Legend

Source Anonymizer Sink
Receiver

Local/Edge realm Platform realm

AI-Service Local transport
Transport protocol

Legend

Monitoring probe
Experiment control

https://netty.io/

IIP-Ecosphere Platform Handbook
59

simple JSON serialization (leading to 650 Bytes of payload). We run the experiment for 1 minute and
exclude by default the first three seconds as well as the last second where fluctuations due to network,
just-in-time compilation and broker startup activities may occur. Further, some time may elapse until
the average throughput is established, which we consider in this experiment as part of the stable
measurements although it may significantly cause variations.

The measurements for this initial experiment have been taken on an Intel Core 7-8750U @ 1.90GHz
with 32 Gbyte running Windows 10 and OpenJDK 13+33. As we aim at the moment for initial measures,
we do not pay specific attention to a clean setup, e.g., getting rid of potentially other process influences
such as a virus scanner or system updates.

Figure 30 illustrates the average ingestion rate at the source on the horizontal axis and the average
arrival rate at the sink on the vertical axis. Until an ingestion rate of around 1000 messages per second,
all binders scale similarly. Over 1000 messages per second, the behavior of the four binders differ
significantly. The arrival rate of the MQTT v3 binder starts dissociating from the ingestion rate at
around 1500 messages per second. For MQTT v5 this happens at around 2100 messages per second
and for AMQP at a rate of roughly 2300 messages per second. While the MQTT v3 binder tries to cope
with the ingestion rate until 6500 messages per second (dropping at the sink to 1400 messages per
second), the MQTT v3 and the AMQP binders stop operating around 2700 messages per second. In
contrast, the experimental Netty binder scales well until 7200 messages per second. Then the sink
rate starts dissociating from the ingestion rate and above 9300 messages per second the simple
experimental broker implementation stops operating as indicated by the trendline in Figure 30.
Moreover, there are noticeable differences in settling time for the average throughput (not shown in
Figure 30): All binders require more than 10 seconds to reach the respective average throughput, while
Netty requires higher settling times for lower ingestion rates and AMQP leads faster to a stable
throughput than both MQTT versions.

Figure 30: Average stream throughput measures for the four utilized alternative binders with trend lines.

As Figure 30 relates source and sink throughput rates, it does not reflect the total number of translated
messages. Due to the streaming setup, the messages among source, processors and sink and also
messages on the “command” channel (one item per five input messages) are communicated. Thus, the
absolute number of transmitted messages per second is higher (least around factor 3.2). Table 8 details
these numbers for the measured protocol-client-server combinations. In particular, our HiveMq

0

1000

2000

3000

4000

5000

6000

7000

0 1000 2000 3000 4000 5000 6000 7000

Av
er

ag
e

Si
nk

 A
rr

iv
al

 R
at

e
[m

sg
/s

] ►

Average Source Ingestion Rate [msg/s] ►

Hive MQTT v5/HiveMq

Netty/Netty

Hive MQTT v3/HiveMq

Rabbit AMQP/Qpid

2 per. Mov. Avg. (Hive MQTT v5/HiveMq)

2 per. Mov. Avg. (Netty/Netty)

2 per. Mov. Avg. (Hive MQTT v3/HiveMq)

2 per. Mov. Avg. (Rabbit AMQP/Qpid)

60
IIP-Ecosphere Platform Handbook

readings amount to similar ranges as reported in [25], where two server machines with up to 16 CPU
cores but no stream processing approach were used.

Table 8: Total number of translated messages per second in best source/sink transmission situation.

Total number of translated messages per second
MQTT v3: HiveMq, HiveMq embedded server 6172
MQTT v5: HiveMq, HiveMq embedded server 8908
AMQP: Rabbit MQ client, Qpid embedded server 9531
NETTY 30298

In summary, the required rate of 125 messages at 8 ms machine pace (R28) is supported by all brokers
and works in combination with the Spring Cloud streaming approach. At around 50 values per message
(650 Bytes of payload in a JSON serialization), a stable ingestion of 1000 messages per second leads to
(calculated) 2.1 GByte of data transmission per hour. Moreover, the Netty binder can cope with
(calculated) 15.6 GByte of data, which even qualifies for R9170. It is important to emphasize that we
focus here on pure IPC transport characteristics without significant data processing load. Moreover,
we use a single stream, i.e., multiple (moderate) input streams from different edge devices may easily
aggregate to even higher frequencies and volumes. In a realistic setting, we expect a multi-server setup
as platform installation and potentially also a redundant cluster-based message handling for individual
tasks, e.g., in the data integration, so that the envisioned approach qualifies for the given data
(transport) quality requirements, in particular frequency and volume.

Further experiments indicate that the discussed behavior is similar when running the data processing
within a single JVM, i.e., as threads, or in separate processes. Measurements on real edge devices with
inter-device (cross-realm) network communications are subject to future work. As soon as further
parts of the platform are available that potentially impact the data size or the performance (meta-
information, security, etc.), further experiments shall be performed.

3.6.3 Connectors Component
The Connectors Component is responsible for the communication with already installed platforms (the
virtual platform aspect) or machines (potentially connected via some form of edge devices). The aim
here is to allow for a bi-directional, typed communication represented in terms of connector instances.
Relying on the design of the Transport Component, it is desirable that the machine/platform
connectors utilize type translators or serializers for the inbound communication, i.e., to translate
received information (if feasible already filtered in application-specific manner) into application-
specific datatypes that can further be processed in the IIP-Ecosphere platform. For the outbound
direction, (AI-)services or humans may make decisions about changes in the connected
machines/platforms. These decisions are represented as information, e.g., commands, and are
translated/sent through the connector to the machine or platform. Here, type translators shall turn
the application-specific data types received from the platform side into information suitable for the
external side. As stated in Section 3.6.2, application-specific type translators shall be realized by code
generation to ease the development of applications.

The connectors discussed in this section may be utilized within the realm of the same factory, i.e., they
may run at reduced or even no security measures. The connectors may also link to external realms,
e.g., via the internet. In this case, adequate encryption mechanisms may apply or even the
machine/platform connectors may have to be extended through IDS functionality.

70 Based on the transferred messages in Table 8, this leads to 13.5 GBytes up to 66 GBytes per hour.

IIP-Ecosphere Platform Handbook
61

3.6.3.1 Related approaches
Regarding IoT protocols, several implementations are available, in particular from various projects of
the Eclipse.IoT ecosystem. Some projects focus on specific protocols, e.g., among others Eclipse Paho
on MQTT, Eclipse Milo on OPC UA, Eclipse Californium71 on CoAP, Eclipse Leshan72 on LWM2M, or
Eclipse Tahu73 on legacy SCADA/DCS/ICS protocols. Other projects already integrate various protocols
such as Eclipse Hono, Eclipse Agail74, Eclipse Kapua75 with a cloud focus based on MQTT transport or
Eclipse Ponte76 for mapping IoT protocols into REST. Although such integrations may be an interesting
basis for our work, they already realize concepts and ideas that do not fully comply with the
requirements of the IIP-Ecosphere platform. For example, Eclipse Hono collects binary payload from
different protocols and forwards the payload to a default protocol (MQTT) without options for
filtering/translating the payload or for supporting alternative protocols. Similarly, Eclipse Ponte
focuses on REST for internal communication, which from our point of view is just one potential
alternative. Further, Eclipse Agail emphasizes the cloud aspect but neglects local resources or edge
devices. While these and similar approaches may ease the access to different low-level protocols or
machine connectors (cf. Section 3.7), they usually do not provide mechanisms to enable core IIP-
Ecosphere functionalities such as data filtering or translation. Moreover, if they implement a stack or
multiple integrated layers, they usually do not offer AAS functionality (R7).

While it makes sense to review these approaches to find a feasible abstraction as well as to consider
existing abstractions and protocol implementations as those mentioned above, it is not productive just
to implement connectors to achieve a high number of protocols (this is one of the strengths of existing
I4.0 platforms as shown in [35]). It is more important to develop and evaluate concepts to enable
openness and extensibility for inbound/outbound directions. From a resource perspective, it is
important to realize connector types for the actual needs of the stakeholders (R14a states MQTT and
OPC UA). Moreover, one goal is to demonstrate how model-based generation can turn such generic
connectors into efficient and application-specific mechanisms already at the bottommost layer of a
platform.

3.6.3.2 Design
For the design of this component, it is important to recall that in contrast to the Transport Component,
the Connectors Component already deals with processing and translating application-specific data. For
example, it is not performant to just ingest, e.g., an entire OPC UA namespace upon each data
modification or, if polling/sampling shall be applied, in each poll cycle. It is more important to select
the required data in an application-specific manner and to focus on the information that is required by
an application running on the platform. We call the step of translating an outbound protocol into an
internal protocol (and back) “protocol adaptation”, i.e., a (generated) plug-in ProtocolAdapter will
be responsible for this task. One form of implementing the protocol adaptation is in terms of existing
TypeTranslator and Serializer instances from the Transport Component, either as the
realizations are part of the platform and can be re-used or because they are defined as part of the
application and can be generated or are provided as hand-crafted components. However, also other
forms of type translation may occur. This applies to connectors that handle generic payload (where
the payload format must be translated to application-specific instances and can optionally be
filtered/translated). Further, it applies to connectors that are based on a specific information model,
such as OPC UA or AAS. In the latter case, we aim for specific TypeTranslator instances that are

71 https://projects.eclipse.org/projects/iot.californium
72 https://projects.eclipse.org/projects/iot.leshan
73 https://projects.eclipse.org/projects/iot.tahu
74 https://projects.eclipse.org/projects/iot.agail
75 https://www.eclipse.org/kapua/
76 https://projects.eclipse.org/projects/iot.ponte

https://projects.eclipse.org/projects/iot.californium
https://projects.eclipse.org/projects/iot.leshan
https://projects.eclipse.org/projects/iot.tahu
https://projects.eclipse.org/projects/iot.agail
https://www.eclipse.org/kapua/
https://projects.eclipse.org/projects/iot.ponte

62
IIP-Ecosphere Platform Handbook

linked to a generic model interface abstracting over the underlying information model. However, not
all approaches support the same range of concepts and types, e.g., OPC UA allows different kinds of
custom datatypes while AAS does not. Thus, connectors will differ in the offered functionality of such
an interface and it may be helpful to provide meta-information stating the connector capabilities in
order to dynamically guideline the code generation for a certain connector.

Figure 31: Event-based connector and push-based protocol-adaptation.

Moreover, connectors may differ in their data provisioning style. For performance reasons it is
desirable to utilize event-based ingestion, i.e., the underlying protocol or information model informs
the connector about new or changed data. Message passing approaches like MQTT or information-
model based approaches like OPC UA provide such events. In this case, as illustrated in Figure 31, the
“Protocol” notifies the Connector about new data. In turn, the Connector consults the
ProtocolAdapter to translate the external data into an application-specific type, which, dependent
on the “Protocol” capabilities, can be done in terms of payload translation or by querying the
abstracted model of the “Protocol” (not shown in Figure 31). When the data is translated, the
respective instance is passed on to a registered streaming Source in asynchronous manner. For the
outbound direction (not shown in Figure 31), the Source ultimately receives the data as a stream and
calls the Connector upon a received data item, which then consults the ProtocolAdapter in the
backward direction ultimately leading to a send/write command on Protocol.

Figure 32: Poll-based connector and subsequent protocol adaptation.

IIP-Ecosphere Platform Handbook
63

Figure 33: Overview of the Connectors Component (comments partially cropped).

Protocol implementations not offering such notifications are subject to polling. One example here is
the current BaSyx implementation of AAS. In the version that we currently use, no events are provided
(BaSyx plans for events earliest end of 202077). In its basic form, polling repeatedly obtains information
from a source and ingests the information regardless whether the information changed in the
meantime. This may be intended, e.g., to realize equidistant input. However, if not desired, it can also
unnecessarily allocate transport resources. To avoid this, since version 0.5.0 of the platform, a caching

77 If the required notifications are available, the AAS machine/platform connector can be extended to support
event-based ingestion.

64
IIP-Ecosphere Platform Handbook

mode can be defined for a connector instance. The mode indicates whether there shall be no caching,
i.e., ingestion of all received data, ingestion only if hash codes are different or ingestion if the contents
of the data is not equal. While a comparison based on hash codes is typically faster than a comparison
for equality, it may also fail if hash codes accidentally are the same for equal data items (hashing
collision).

As illustrated in Figure 32, the IIP-Ecosphere Connector then actively (based on connector settings)
polls information from the “Protocol”. As before, the Connector consults the ProtocolAdapter
and notifies the registered Source about the data to be ingested. The outbound direction works as
discussed for event-based ingestion. Realizing the polling cycle in the Connector rather than the
Source allows for connector-specific polling strategies as well as for a uniform interface towards the
stream-based data processing in the IIP-Ecosphere platform.

While event-based injection and polling may appear to be an alternative choice, a Connector may,
if feasible, implement both alternatives and let the user (via the setup/platform configuration) decide
about the desired approach. In particular, connectors for protocols based on information models
may support both forms (such as OPC UA). Figure 33 presents an overview of the main classes in the
Connectors Component of the IIP-Ecosphere platform. The component consists of:

• The Connector interface in the middle of the figure representing a platform/machine
connector. Connectors based on an information model shall exhibit a ModelAccess instance
to interact with the information model. The Connector interface defines four template
parameters, consisting of the data types accessible from the platform, i.e., CI for input into
the connector and CO for output produced by the connector, and the data types for the
handshake with the underlying protocol implementation, i.e., I for input into the protocol and
O for output issued by the protocol. A Connector can be connected as specified in the
ConnectorParameters and security settings like IdentityToken or certificates. When
connected, received data of type O is passed through a ProtocolAdapter and an interested
party is informed through a ReceptionCallback (from the Transport Component) in terms
of a data object of type CO. Via the write method, data of type CI can be passed in, is
translated by the ProtocolAdapter and handed as an instance of I to the underlying
protocol. Finally, a Connector can be disconnected or, ultimately, disposed. So far, we
plan for a single distinct pair of input/output types. If heterogeneous types shall be covered,
we see two alternatives: 1) Mapping the alternative types as alternatives into an umbrella
type. 2) Using a discriminator in terms of the AdapterSelector.

• The TranslatingProtocolAdapter is a default implementation of the
ProtocolAdapter and relies on type translators, i.e. InputTypeTranslator and
OutputTypeTranslator defined by the Transport Component. The ProtocolAdapter
and its related classes will be detailed below. In particular protocol adapters to information
models have a relation to a ModelAccess instance, which allows the type translation to
interact with the model.

• The AbstractConnector provides a basic implementation, e.g., for handling the
ReceptionCallback, for utilizing the ProtocolAdapter, etc. leaving just methods open
that are protocol specific. The AbstractChannelConnector specializes the
AbstractConnector for channel-based protocols such as MQTT and, in turn, requires a
specialized protocol adapter (as we will detail below).

• The ConnectorExtension may add additional capabilities to a connector, e.g., IDS support.
The IDS reference architecture model introduces the concept of Trusted Connector. Such a
connector extends the security features of Base Connector. An IDS connector generally focuses
on security and delivers a trusted platform, incorporating several mechanisms such as identity
and trust management for authentication, trustworthy communication based on encrypted

IIP-Ecosphere Platform Handbook
65

connections. Instances of trusted connector allow the remote integrity verification to ensure
the integrity of the deployed software before granting corresponding access to data. Such
connectors guarantee a controlled execution environment for data services [22].

• The ConnectorRegistry collects information about installed and used connectors. Installed
connectors are registered through an instance of ConnectorDescriptor upon
infrastructure startup (in Java through JSL) with the ConnectorRegistry.

Figure 34: Model Access and Protocol Adapter in the Connectors Component.

66
IIP-Ecosphere Platform Handbook

• The information provided by the ConnectorRegistry is also the basic information to be
presented in the AAS of the Connectors Component. Further, selected capabilities of the
connectors are made available through the installedConnectors sub-model of the
platform AAS. Created connector instances register themselves upon connect/disconnect with
the ConnectorRegistry, which in turn leads to an update of the activeConnectors sub-
model, i.e., connected connectors appear as sub-model elements and disconnected
connectors are flagged as inactive78. Further, connector instances provide access to their
input/output data types by referencing to the respected sub-model elements in the Types
sub-model (see Section 3.5). Ultimately, connector instances link to their descriptors in the
installedConnectors sub-model to indicate their origin and capabilities.

• The ConnectorFactory is a proxy to dynamically create the most appropriate connector
instance if there are alternatives, e.g., MQTT v3 and MQTT v5. Such a ConnectorFactory
takes the ConnectorParameters and may decide on the supplied device service information
(if present) on the actual connector type. An implementing connector artifact may rely on
existing connector implementations (as we do for MQTT). The configuration model (see
Section 6) shall define a specific type representing the ConnectorFactory and its artifact to ease
its application.

Currently, four specific (optional) connectors are realized in terms of individual components extending
the Connectors Component. These are the generic AasConnector for integrating external AAS into
the platform (based on the AasFactory from the Support Layer79), the OpcUaConnector for OPC
UA 1.04 (based on Eclipse Milo) as well as two payload-based MQTT connectors, one for MQTT v3 and
one for MQTT v5, also based on Eclipse Paho akin to the Transport Component. Each of these protocols
bind the known template parameters of Connector as needed, all leaving CI and CO unbound as
these are application-specific types to be defined when instantiating the respective connector (and
providing a matching ProtocolAdapter). Optional TLS encryption support (R40) is realized for both
MQTT connectors, the OPC UA connector and the AAS connector (if the BaSyx implementation is used,
the AAS registry remains unencrypted by default, the AAS server can optionally be executed with TLS).
These approaches/protocols have been selected due to the required mandatory support for BaSyx (R7)
as well as R14a explicitly mentioning OPC UA and MQTT. All connectors are based on TCP/IP
networking (R14b). However, R14b does not clarify the protocol and the wire format, but some TPC/IP
based protocol can be realized using the structures defined in the Transport and the Connectors
Component. Similarly, Bluetooth LE was mentioned in R14c without further details. As the Connectors
Component is designed to be open, further connectors can be added easily.

We will now detail the ModelAccess and the ProtocolAdapter approach illustrated in Figure 34.
Some approaches like OPC UA or Asset Administration Shells (AAS) are based on an information model,
OPC UA even with user-defined custom types. Accessing this model in a uniform manner is a key
requirement for simplifying the generation of application-specific code for the connectors. This is
specified by the ModelAccess interface, which allows to read/write properties (based on a
hierarchical naming scheme to be interpreted in the context of the underlying protocol), to call
operations, and to register (the implementation counterpart of) custom types. The specific
ModelAccess instance of a Connector can perform instance translations between value instances
of the model and the actually used internal type in the platform/application datatypes. ModelAccess
provides also opportunities to establish monitors on the underlying information model of the protocol,

78 So far it seems that no elements can be removed at runtime from an AAS, potentially to not render
references among them illegal.
79 While BaSyx is the default implementation for IIP-Ecosphere, this connector provides the possibility to define
the individual instance to be used, i.e., individual instances for specific connections may use other factory
instances than the default one.

IIP-Ecosphere Platform Handbook
67

i.e., to be notified on specific changes, as well as to register programming language counterparts of
custom types defined in the model.

While all methods can be implemented for OPC UA, not all methods are currently meaningful for AAS
or at least the version of BaSyx that we are using, i.e., some capabilities may not be supported which
can be indicated in the meta-data of a Connector. The use of the abstracted model access is
supported by AbstractModelAccess providing a common basic implementation. For payload-based
protocols such as MQTT, implementing the ModelAccess interface is not required.

As illustrated on the left side of Figure 34, several further interfaces and classes are defined to support
the type translation. These classes shall provide flexible support for applying the type translation
mechanism and even to utilize existing serializers if applicable. If required, a Connector may be also
implemented from scratch, i.e., without a ProtocolAdapter or using a ProtocolAdapter that is
not based on TypeTranslator from the Transport Component. The AbstractProtocolAdapter
is a default implementation providing access to the ModelAccess instance of the connector. The
TranslatingProtocolAdapter is a refined default implementation of ProtocolAdapter using
two type translators, one for the translation of information provided by the protocol, i.e., types O to
CO, and one for the translation in counter direction, i.e., types CI to I.

As discussed above, the role of the ProtocolAdapter and the involved type translators changes
when the underlying protocol is based on an information model rather than on payload transport. For
payload transport, the target communication channels are needed, which are introduced by the
ChannelProtocolAdapter and its default implementation
ChannelTranslatingProtocolAdapter, an extension of the TranslatingProtocolAdapter.
In contrast, for an information model-based protocol, also the ModelAccess instance must be made
available to the type translators as well as further initialization work such as defining the polling mode
must be performed. This is introduced by the two refining type translator interfaces, namely
ConnectorInputTypeTranslator and ConnectorOutputTypeTranslator, both with a
corresponding basic implementation.

A further aspect is covered by the types package on the left side of Figure 34. The direction of type
translation of Serializer in the Transport Component is opposite to the direction for a
ProtocolAdapter in the Connectors Component, i.e., Serializer instances do not fit directly into
these. In some cases, it would be convenient to use already defined Serializer instances. To
facilitate this reuse, we introduce the ConnectorInputTypeAdapter and the
ConnectorOutputTypeAdapter, which both take a Serializer as input and make it usable in the
context of a Connector.

At the bottom of Figure 34, the two packages parser and formatter depict how the platform can
handle binary input or output of channel connectors in a generic and open manner. The platform offers
certain default input parsers or output formatters, respectively, currently JSON and data formatted by
separators, e.g., tabulators or commas as we found in some application cases. Parsed data is supposed
to be mapped to record types defined by the user in the configuration model. After parsing, data is
either accessible by hierarchical names, i.e., in terms of nested data types, or in positional manner
along a deep traversal of the defining data type. In the opposite direction, data is handed in deep
traversal sequence to the data formatter, which produces the respective format in terms of binary
data to be passed to a channel connector. Individual data values can be read in typed fashon from an
input parser via an associated input converter. In the opposite direction, the output converter takes
typed data and converts it into the output format. Both mechanisms are utilized by the generated
connector integration that we discuss in more detail in Section 6.

68
IIP-Ecosphere Platform Handbook

3.6.3.3 Validation
The functional validation of the Connectors Component and the specific connectors realized as
extensions happens through regression tests. Therefore, we follow the same basic idea as explained
for the Transport Component in Section 3.6.2.3, i.e., we set up a corresponding protocol server/broker
and cause an information shortcut between server side and test code. The test code produces protocol
output data (of type O) either by modifying the underlying information model (event-based ingestion,
polling) or by sending respective payload. The connector under test translates the data and issues an
instance of type CO to a ReceptionCallback in the test code, which turns the information into an
instance of CI and writes it back into the connector. The respective information must occur on the
protocol side and can be analyzed and asserted by the test code. Also, these regression tests are
subject to Continuous Integration.

Further functional tests have been performed in the context of the IIP-Ecosphere platform use case
studies, e.g., in the context of partners such as Lenze, Phoenix Contact or the VDW. In these validations,
the default IIP-Ecosphere connectors were complemented with handcrafted serialization or type
translation plugins to test the expected intake of use case specific formats (e.g., OPC UA or JSON via
MQTT) and, where applicable, connected to the infrastructure of the partners. Moreover, the
connectors are subject to automatic, model-based integration via the configuration model and the
platform instantiation (cf. Section 6). For validation, the situations of the partners from the platform
use case studies have also been modeled in terms of the IIP-Ecosphere platform configuration, the
connector service integrations have been generated and the intake has been validated. We conducted
initial performance analysis on the serialization mechanisms and the generated connectors. The
comparison of serialization mechanisms indicated performance peaks up to factor 10 for different
JSON libraries in the context of the use case studies. The generated connectors are (nearly) as fast as
the handcrafted ones, sometimes sacrificing a bit time for a generic, open integration as well as a more
schematic model-based integration.

3.6.4 Requirements Discussion
Finally, we review in this section the realization of the most relevant requirements for the Transport
and Connection Layer. The results are summarized in Table 9.

Table 9: Review of realized80 requirements for the Transport Layer (based on Table 2, Table 3 and Table 5).

Require-
ment

Summary

R1 Support for protocol/streaming extensions of different vendors based on different
technologies.

R2 Used standards: MQTT, AMQP, OPC-UA, AAS
R3 Virtual platform: Container integration possible, communication with underlying

platforms possible but not responsibility of this layer
R4 Design based on components and services
R5 Eclipse Paho, Rabbit MQ, Eclipse Milo, Eclipse BaSyx, Spring Cloud Stream, more for

testing
R6 Open for optional/commercial components (transport connectors, serializers,

machine/platform connectors, protocol adapters, etc.)
R7 Basic information on transport as well as available/active machine/platform

connectors is provided. More information regarding supported protocols or broker
may follow.

80 In the requirements review tables, „realized” refers to implemented in terms of functionality, committed into
the IIP-Ecosphere GitHub repository, tested and integrated with the platform functionality. Text in italics refers
to missing functionality, i.e., entries that are partially formatted in italics typically indicate partial realization.
Work in progress or incomplete/non-integrated realization may be excluded from platform releases.

IIP-Ecosphere Platform Handbook
69

Require-
ment

Summary

R8 On component/extension level: Alternative TransportConnector and Spring
Cloud Stream binder components without cross-dependencies among the protocols
(except for re-use in testing). Optional platform/machine connectors without cross-
dependencies among the protocols (except for re-use in testing).

R9 Level 1: By auto-reconnect mechanisms of the protocol implementations and of the
streaming library
Level 2: By monitoring the service execution and restarting services if needed (see
ECS runtime in Section 0)
Level 3: By explicit fallback, i.e., hot-standby replication of services, multiple
connected broker installations and dynamic stream rerouting. Level 3 is supported
by the selected streaming library, but not realized in this release.

R10 Soft realtime processing (<100 ms) for production-critical functions feasible (see
Sections 3.6.2.3 and 3.6.3.3, excluding services on this level)

R11 Documentation (also in terms of this section), extensive code documentation with
JavaDoc, generation subject to Continuous Integration and Maven deployment

R12 Not implemented in this release.
R13 Connectivity to other actors via standardized and open protocol integration
R13a I4.0 devices: Via standardized/open protocol integration and flexible wire formats.
R13b I4.0 platforms: Via standardized/open protocol integration and flexible wire formats.
R13c Other IIP-Ecosphere platform instances: Supported via implemented AAS connector,

optionally using IDS functionality. Supported by standardized transport protocols
and flexible wire formats.

R14 Open and flexible connector integration and default connectors for platform
internal messaging and stream transport.

R14a MQTT is supported. OPC UA PubSub is currently not feasible on this layer due to
missing implementations. Services and Connectors Layer (cf. Section 3.7) will take
OPC UA into account.

R14b TCP/IP support by all implemented connectors. Further, plain TCP/IP protocols with
flexible wire formats possible through extensibility of discussed components.

R14c Future: Bluetooth LE may be supported through additional connectors if required.
R15 Uniform connectors through two main interfaces as well as type transformation /

serialization interfaces.
R16 Open and flexible connector integration shown for five protocols. Extension by

further protocols from partners and externals possible, supported through Open
Source development GitHub.

R17 Distribution of connectors to devices by considering the Transport Layer as re-
usable, deployable component only with dependencies to selected protocol
implementations.

R17b Management of connectors by platform through design management classes,
exhibited by respective AAS (R7)

R17c Parameterizable connectors through parameter objects and connector plugins such
as the ProtocolAdapter.

R18 Connectors with specific security mechanisms are not part of this release.
R19 Minimal number of internal wire formats through common type-safe data

serialization while enabling application-specific data types. Feasible wire formats
can be selected through serialization implementation/generation.

R19a Example input formats (southbound), covered by application-specific types and
generic serialization. 50 values per data item feasible see Sections 3.6.2.3 and
3.6.3.3.

70
IIP-Ecosphere Platform Handbook

Require-
ment

Summary

R19b Example input formats (northbound), covered by application-specific types and
generic serialization.

R19c Restful APIs with JSON/XML through AAS implementation and wire format as argued
in this section.

R19d Example output formats (northbound), covered by generic serialization
R19e Output data clocked in 5 s intervals possible (see Sections 3.6.2.3 and 3.6.3.3,

excluding services on this level)
R19f Via the TypeTranslator, configuration and code generation
R19g Not part of this layer, supported at least through TypeTranslator, configuration

and code generation
R20 Supported by streaming library, to be realized by glue code generation (through the

configuration model).
R21 Low impact on data throughput (see Sections 3.6.2.3 and 3.6.3.3, for existing

connectors, excluding services on this level)
R22 Platform data throughput of 500 GBytes per year (see Sections 3.6.2.3 and 3.6.3.3)
R28 Machine pulse of 8 ms feasible (see Sections 3.6.2.3 and 3.6.3.3)
R35 OT sampling frequency of 2 ms does not apply to the IT side.
R38, R39,
R41-R68

Several security and privacy mechanisms that are introduced in Figure 20 are used to
ensure introduced security and privacy mechanism. These mechanisms can be added
to different layers, phases, and abstraction levels of design. Security mechanisms are
indicated in the architecture but not part of the implementation of this platform
release.

R40 The default transport protocol plugins/binders as well as the MQTT machine
connectors provide optional support for TLS, but so far no RBAC mechanism is
integrated.

R91 7 GByte per hour not validated on this level (see Sections 3.6.2.3 and 3.6.3.3,
excluding services on this level)

We conclude, that most of the basic requirements for this layer are already implemented. Advanced
functionality as well as security and data protection mechanisms (although prepared through
respective abstractions) are subject to one of the next releases.

3.7 Services Layer
The Services Layer introduces the basis for deployable services, i.e., their interfaces, data flows,
monitoring support, management and AAS representation. We separate this layer into two major
components, one component to control/manage service instances and a second providing a unified
execution environment for services. We start with a discussion of the terminology and background in
Section 3.7.1 and detail then the requirements for this layer (Section 3.7.2). In two further sub-
sections, we turn then to the two major components of this layer.

The service management component is generic and can be realized in the same way for all services.
Due to the overall vision of IIP-Ecosphere to support easy-to use AI methods in intelligent production,
AI functionalities shall be realized in terms of services (“AI services”, named as AI toolkit in [13]).
Nowadays, AI is typically realized using various programming languages, in particular Python (R113
names Python and Java). We support this in terms of a language-specific execution environment
supporting a unified integration and easing the development of services for the IIP-Ecosphere
platform. In Section 3.7.3, we discuss the Service Execution Environment for Java and Python.

IIP-Ecosphere Platform Handbook
71

The Control and Management component (Section 3.7.4) is closely related to ECS runtime and acts as
control interface for the platform to take command over services running on certain devices. Control
operations are, e.g., starting, stopping, reconfiguring or updating services. These operations are
offered through an AAS, which also provides access to runtime monitoring information for individual
services. Specific operations involve multiple services, such as switching among equivalent services or
migrating services among resources, where the control and management component is responsible
for the orchestration of such operations.

While we briefly discuss the validation of the individual components at the end of the respective
section, we review the requirements for this layer in Section 3.7.5.

3.7.1 Terminology and Background
In this section, we briefly introduce our notion of the term service and discuss the bigger picture, where
service implementations are supposed to originate from.

Several notions for services are used, ranging from web services to microservices. In the IIP-Ecosphere
platform, a service is (a thread in) a process implemented in any programming language. A service
receives data and produces data in continuous stream-based manner. Therefore, the platform keeps
a service alive and runs it continuously. Input and out data types are defined and their correct
composition shall be controlled through the configuration model and the subsequent code generation
(cf. Section 6). Data handling can happen synchronously, i.e., an input item is turned directly into zero
or multiple output items, or asynchronously, i.e., the service receives data and produces data at any
time later if at all. A service indicates its state (R4c), meta-information (R4b), name, identification,
version, kind/category as well as the typed input- and output connectors (R4a). Moreover, it allows for
certain runtime operations such as passivation, migration, runtime switch to an equivalent service,
reconfiguration or (re-)activation. Services are typically connected to other services of different kind,
ranging from source over transformation to sink services. A specific service kind is the probe service,
with inspects data for monitoring, but passes the data through (typically) without modification.
Instantiated connections between services are called data paths/relations [41] and shall be defined as
part of the applications in the platform configuration.

Services can be classified into platform-provided services and application-specific services. A
platform-provided services (for short platform service) is a service that is shipped with the platform.
Typically, a platform service is generic and parameterizable so it can be applied in various settings. As
services usually were not realized for the IIP-Ecosphere platform, the integration of such a service and
the form how to customize the service, e.g., with respect to required input/output data formats, the
data transport to/from the service, the passing of parameters, etc. is typically rather service specific.
In contrast, an application-specific service is (initially) designed for the use within a specific application,
i.e., input/output datatypes as well as parameterization are fixed and determined by the application
context. Moreover, hybrid services may occur, typically generic platform services that can operate
without application specific code, but which can be customized through add-ons or plugins, which then
turn an instance of the hybrid service into an application-specific service. Thus, hybrid services can
ease the realization of application-specific services and still act as platform-provided services.

Further, it is important to answer the question “Where do services come from?”. Details of the
mechanisms will be introduced later, in particular in Sections 3.11 and 6. However, a coarse picture
may already be helpful here. Service types are specified in the platform configuration, in particular
through their technical information, their meta-information and the input/output datatypes. Also, the
relations among the services in terms of application-specific service meshes are defined in the platform
configuration. The platform instantiation/code generation either integrates platform-provided
services into the realization of such a mesh or, in case of application-specific services, turns this

72
IIP-Ecosphere Platform Handbook

information into service interfaces. Moreover, the code generation creates support artifacts such as
data classes, data serializers or basic service implementations (for any relevant programming language,
e.g., Java or Python). Further, the instantiation process binds the service (interfaces) with service/glue
code to the selected streaming engine. For application-specific services, the binding happens through
dynamic class loading. First, this allows for code generation even if there is no actual service
implementation, e.g., when the model is built up and in a first stage only service interfaces shall be
generated. Further, it eases packaging with reduced dependencies as class loading cannot fail if
dependencies for services that shall not be executed are intentionally missing. Last, dynamic class
loading also eases dynamic exchange of compatible service implementations, e.g., when adapting the
service execution. Dependent on the service configuration, data may be handled synchronously or
asynchronously. As part of the generation process, also the service descriptors required by the Service
Control and Management component or the Spring application setup including the service wiring are
created. Here also information for AAS nameplates is taken from the configuration and turned into
respective implementation artifacts to build up the related AAS and submodels, e.g., one vendor AAS
per service type known to the platform.

3.7.2 Requirements
In Table 10, we summarize the specific requirements for the Services Layer discussed in [13]. The
notion of a service is cross-cutting, i.e., it occurs in many topic areas in [13] and, thus, a summary of all
relevant requirements is important for the design and realization. Besides these functional
requirements, we must also consider the decisions made so far, i.e., that services may offer a two-
folded communication: 1) communication at lower pace for commands, status and quality properties
via AAS and 2) soft-realtime communication via streams whereby the stream-integration shall be
generated and flexible in order to allow for an exchange of the streaming approach. This is in particular
important for monitoring (R4b, R4c, R4e, R4f, R133) of runtime properties and the runtime stream
management, in particular to start, stop, connect (R20), update (R135), configure (R32), adapt (R69
and R31c, see also dynamic service selection in [13]) or dispose (R134c) services on demand. To be
integrated in a flexible manner, monitoring and service management must be realized based on explicit
interfaces, so that an exchange of the implementations becomes possible. If feasible, existing
interfaces shall be utilized.

In the default stream processing approach in IIP-Ecosphere, i.e., Spring Cloud Stream (see Section
3.6.2.1), the micrometer81 interface is used to exhibit monitored information in HTTP/REST style.
Moreover, Spring provides specific management capabilities for Spring Cloud based service
applications, e.g., to start services in individual processes. As micrometer is supported by several
(commercial) monitoring tools, it appears to be a valid choice as monitoring interface, which, however,
must be integrated with AAS (R7). For the stream management, it makes sense to reuse existing
functionality from the Spring Cloud ecosystem, e.g., the Spring Cloud Deployer. It is important to make
this functionality optional and to enable it when Spring Cloud Stream is selected as stream processing
engine of a platform instance. However, most of the Spring management providers target rather
specific (non-edge cloud) environments, so we will rely on the so called Local Deployer and integrate
it as optional extension of the Service Control and Management component.

Moreover, the Service Layer must set the scenes for the management of heterogeneous service
implementations (R113), including platform services that are more likely to be realized in Java or as
Java interfaces to service implementations of underlying frameworks or platforms.

81 https://micrometer.io/

https://micrometer.io/

IIP-Ecosphere Platform Handbook
73

Table 10: Requirements for the Services Layer (excluding configuration, storage services, not repeating Table 2 or Table 3)

Requirement Summary
R4a Components/services must be described with their interface (input, output)
R4b, R131b Components/services must be equipped with meta information (version,

categorization)
R4c Components/Services must have a queryable state
R4d The execution of the services must be supervised
R4e Service monitoring shall be parameterizable
R4f Service monitoring shall be realized by application-specific services
R20 Application-specific data paths
R20b Data paths can have properties/parameters
R20c Data paths shall be managed by the platform
R29c, R70,
R122f

Services shall describe their own quality properties and functions as AAS

R31 Container shall contain only the required components/services
R31a Required components must be specified in the configuration model
R31b Containers can contain optional components
R31c, R69 Alternative services for one task, even dynamic exchange of (alternative) services

at runtime
R32 Configuration of services via parameters
R39 Personal data processing only for authorized users
R41 The security mechanisms shall be integrated with common directory services
R42 Further safety mechanisms must be configured uniformly
R46 Collection of personal data must be for specified, clear and legitimate
R47 Avoiding the processing of personal data as much as possible
R48 The platforms should not store data for longer than necessary
R49 Process personal data adequate and relevant to the legitimate purposes
R52 Store personal data in a structured, common and machine-readable format
R67 Capture and classify generated cookies or similar identifiers stored on end devices
R73a-f, R79 Supported datatypes: structured, heterogeneous time series, unstructured data,

labeled data, meta data/data schema
R113 Support for different programming languages, e.g., Python
R132 Platform-supplied and application-specific services shall be supported
R133 Runtime support for applications (and the services an application consists of)
R133a Status of services
R133c Support for changing the status of services
R133d Detection of failure states and functions to mitigate failures
R134c Removal/disposal of services
R135 Update of applications (and the services an application consists of)

3.7.3 Service Environments
In the IIP-Ecosphere platform, the service environments provide implementation and execution
support for services realized in different programming languages. Java services and non-Java services
are integrated differently into (a Java-based stream-based) service execution engine. While Java
services can be directly called, non-Java services are executed as individual processes and receive their
control commands and data via inter-process communication/network, in particular an AAS command
server. It is desirable to use a single server here, e.g., the “AAS command server”.

74
IIP-Ecosphere Platform Handbook

Figure 35: Design of the Service environments.

IIP-Ecosphere Platform Handbook
75

As the configuration modeling approach does not target the modeling of behavioral code rather than
configuration options and their interdependencies, the actual implementation of services cannot be
produced in this step. Such an approach would require a high effort in modelling, in particular (a
combination with) modeling approaches that are better suited to represent algorithm behavior, call
sequences etc. We do not target such complex models as the realization of functional services shall
ultimately be a human activity, e.g., by a data analyst, AI expert, etc. and shall be integrated with their
work. Thus, the interfaces produced by the code generation are input to a manual implementation
process and interrelate in particular with later phases of the data analysis lifecycle. For this purpose,
the code generation produces interfaces, data classes and serializers for all supported languages, i.e.,
currently Java and Python. The resulting code shall lead to versioned code artifacts (Maven artifacts,
Python code with “python” as classifier) and be deployed into a repository. For the aforementioned
deployment descriptors and the automated creation of containers (not part of this release) for the
service execution, also non-Java dependencies, e.g., to AI frameworks are relevant. The respective
artifact information is specified for the individual services in the configuration model and the packaging
of the application artifacts at the end of the code generation process integrates the service code with
service descriptor and application setup. Ultimately, the application artifacts are made available
through an own repository mechanism (called the Service store in [41]) so that either the automated
generation of containers or the Service Management and Control component on the target resources
can obtain the service code and install/execute it.

3.7.3.1 The Java Service Environment
Figure 35 illustrates the concepts and relations of the service environments, in particular the Java
Service environment. The central package (environment) represents both, the basic service
environment for Java and Python. This package (on the left side of Figure 35) defines the Service
interface with all operations discussed for an IIP-Ecosphere Service in Section 3.7.3. The states from
Figure 36 are represented in terms of the ServiceState enumeration, the four main kinds of services
in terms of the ServiceKind enumeration. The service environment also provides support for service
parameters, i.e., the customization of generic services through values that are determined upon
service start or may be changed at service runtime.

A service realization is free to fill the service meta-information as desired, e.g., through code
generation or by reading the information from a file. As the Service Management and Control
component relies on service deployment descriptors, one obvious approach is read out the relevant
information from that descriptor. As these descriptors are given in YAML format, the two classes
YamlArtifact and YamlService are part of the service environment to read and represent that
information. It is important to recall that we need here only a part of the information in the
deployment descriptor, e.g., the technical information on how to transfer network ports or how to
start a Python process are not required. Thus, the two classes represent only the relevant information
and the YAML parser is commanded to ignore all further information. In turn, both classes can be used
as a basis to realize the parsing of the deployment descriptor of the service management and control
operations in Section 3.7.3. For this purpose, parts of the (Java) service environment are imported into
the Service Management and Control component and used there.

Further abstract classes provide basic mechanisms for realizing services, e.g., through operating
system processes or using the REST protocol (on device-local networks). We just mention some
examples here. AbstractProcessService provides the abilities to create an operating system
process through a standardized naming scheme, to manage the process instance via the service status,
including activation and passivation, and to customize the console input/output streams. The
AbstractProcessService defines four template parameters, namely the received input data type
(I) from the perspective of the platform/application, the input data type (SI) of the implementing
process, the output data type (SO) of the implementing process and the output data type of the service

76
IIP-Ecosphere Platform Handbook

(O) from the perspective of the platform/application. An AbstractProcessService requires two
TypeTranslator instances, so that incoming data can be translated into a format that can be
handled by the implementing process and, further, that the output of the implementing process can
be re-ingested into the platform data streams. Here, we rely on the TypeTranslator interface from
the Transport component (cf. Section 3.6.2) rather than the Serializer interface as the format to
be passed to the implementing service could be JSON, XML etc. and must not necessarily be binary
data. Moreover, the AbstractProcessService requires a ReceptionCallback (the interface
from the Connectors component in Section 3.6.3), so that data can be processed asynchronously.
Currently, the classes do not (yet) support synchronous processing. As a refinement, the
AbstractStringProcessService forms the basis for process-based services that communicate
through a string format via console streams with the implementing process, e.g., JSON. This fixes two
template parameters, namely SI and SO to String, also allowing to provide a basic realization
of some inherited abstract methods, e.g., how to receive data from the implementing process. The
GenericMultiTypeService supports multiple input/output types in a generic manner. The Python
integration services (for the Java side) utilize these capabilities to integrate Python services via the
Python service environment (see below). Moreover, basic classes for REST-based service integration
do exist, e.g., the AbstractRestProcessService.

One generic service that is provided by the Java Service environment is the TraceToAasService (not
shown in Figure 35). This (sink) service provides/contributes to an AAS used as application endpoint.
However, it does not show the received data rather than optional trace messages sent by the individual
services in an application. Trace messages can be enabled for debugging or for demonstration. These
messages carry their origin, the action as well as an action-specific payload, e.g., the received data.
The service collects all trace messages and displays them for a given time frame in its trace submodel.
Moreover, the service is intended to act as a hybrid service, i.e., it can be used as basis to implement
an application-specific service, which then may display processed data in an application manner or
which may provide operations to be called by a device connected to the endpoint AAS, e.g., a tablet.

The Java service environment also provides a ServiceMapper, a helper class that binds a service
against a given AAS command server. Moreover, the ServiceMapper registers also the available
metrics (see below) in the AAS command server. Ultimately, the Starter realizes a basic (optional)
process to register all services given in a YAML service descriptor and to start the AAS command server
on a given port. Services may also take care of a self-registration as it is the usual approach for Spring-
based service implementations.

The right side of Figure 35 illustrates the extensible resource and service metrics framework based on
the work of Miguel Gómez Casado [3]. All information to be monitored is represented in terms of
gauges, counters or timers as defined in the micrometer monitoring interface82. We opted for
micrometer, because a number of well-known monitoring tools such as Dynatrace support this set of
concepts and because Spring Cloud Stream already exposes several default metrics via this interface.
In more details, a gauge is a handle to get the current value of a monitored property, e.g., the number
of threads in a running state. A counter is something that can be incremented or decremented by a
fixed amount, while a timer is intended for measuring short-duration latencies, and the frequency of
such events.

Micrometer provides interfaces and basic implementations for these concepts for the provider/service
side, a JSON format to transport the information and through Spring a server to expose this
information in terms of REST. However, the use of the micrometer ends at the service side, as typically
accessing the monitored information is not part of the interface. Usually, the information is requested

82 https://micrometer.io/docs/concepts

https://micrometer.io/docs/concepts

IIP-Ecosphere Platform Handbook
77

through some form of REST client. This would contradict our basic requirement to try to realize all
(distributed) communication via AAS (R7) or Industry 4.0 protocols (R14). Therefore, we use the REST
information only locally and map this information into the AAS of the respective services. Moreover, it
would be convenient to access the data of the meters in uniform manner also in other platform
components, e.g., in the platform monitoring component. The first step towards this goal is to realize
a request-side implementation of the micrometer representing (distributed) meters (package
environment.metricsProvider.meterRepresentation). The second step is to encapsulate
the communication, i.e., the micrometer REST communication as well as the AAS representation of the
metrics. This is done in terms of MetricsExtractorRestClient and MetricsAasConstructor
in environment.metricsProvider.metricsAas. Finally, the MetricsProvider in
environment.metricsProvider defines the unified access to predefined micrometer elements
such as the system memory, but also custom meters, e.g., to measure the stream throughput. Services
can be explicitly marked as MonitoredService to receive an instance of the metrics provider in
order to define and measure application-specific metrics. For example, the
AbstractProcessService discussed above is a MonitoredService to provide access to the
runtime metrices of the underlying process through OSHI53. Moreover, services can be marked as
UpdatingMonitoredService if regular updates of the measurements are needed. We consider
monitored values as properties of the respective AAS submodel elements. To obtain the values, we
attach functors to these properties to read out the monitored values. These functors may either rely
on polling individual values via VAB [3] (pure R7) or on pushing the entire metrics provider via the
Transport Layer (R7 and R14) into a local data instance attached to the AAS functors [4], where the
performance impacts of three AAS integration patterns are discussed.

The classes discussed so far are intended for generic stream processors. Spring Cloud Stream and
Spring Boot require specific code for services, the integration of the metrics and for their startup
process. While the built-in metrics can be activated through a setting in the Spring application setup
and by adding a respective dependency, the additional metric mechanisms defined in
environment.metricsProvider are not automatically integrated. As discussed in more detail in
[3], this is handled in the VAB poll approach by the extended MetricsProvider for Spring, the
RestAdvice and the MetricsProviderRestService. Moreover, the startup code in Starter
hooks into the Spring startup process, i.e., it obtains the Spring Rest server port, it attaches the port to
the MetricsExtractorRestClient used by the upcoming services and starts the AAS command
server of the parent class at a point in time when this is permissible for Spring. The Starter class is
then integrated by the code generation in the actual service start code, which finally consists of just a
few methods refining or delegating work to the Starter classes defined in the service environment.

3.7.3.2 The Python Service Environment
So far, we exclusively discussed the Java side of the service environment. Except for the monitoring
and the Spring-specific implementation, the Python service environment is to a certain degree a
mirror of the Java service environment. Differences are:

• The Python environment is accessed through the Java representation of services in the
streaming engine, i.e., the Python environment realizes some form of command server as well
as the soft-realtime data transport.

• A second difference is that we do not plan to monitor the non-Java environments unless
explicitly required, because stream measures can be taken on the Java side. Resource
measures such as memory consumption can be combined with the related Java process, i.e.,
the monitoring there requires an extension so that the resources consumed by the Python
process can be considered. The Python monitoring is not part of this release.

78
IIP-Ecosphere Platform Handbook

As illustrated at the bottom of Figure 35, the Python service environment implements similar concepts
as the Java environment. However, the Python service environment does not need to be a complete
mirror as only the parts to execute services and to enable the communication between the Java side
and the Python service implementation are required. Therefore, the Python service environment
provides the ServiceEnvironment class, which imports service implementations dynamically from
four packages named datatypes, serializers, interfaces and services. The first three
packages are generated from the configuration model and provide datatype implementations, related
serializer/type translator implementations and service interfaces specified in the configuration model
(implemented based on Service/AbstractService from the service environment). The services
package contains the manual implementations of the services.

For the data transport between the Java side and a service environment in a different programming
language, e.g., Python, we can imagine the following alternatives:

1. Use of the platform Transport Component using a local transport server/broker. However, as
the Transport Component is open regarding the transport protocol and the serialization, this
would imply that all service environments (except for the Java service environment) must
implement all transport protocol variants and all serialization mechanisms. If there is not just
“the Python environment” but further language-specific environments, this leads to a plethora
of required protocols. In particular, if the user organization decides to implement own
protocols, these protocols must be mirrored into each environment. We do not think that this
is a feasible and sustainable solution and opted for restricting the transport layer to Java code.
Thus, the communication with Python may be based on a (local) protocol here, e.g., HTTP/REST
as well as the serialization mechanism may even be fixed, e.g., JSON. While this approach is
feasible as only a few variants are needed, it requires server processes for the communication
on Java and Python side.

2. Extend the VAB protocol to transfer data. This is a specific decision of fixing protocol and
serialization as mentioned in alternative 1. Also here, the back channel would require further
server processes on the Java side. Moreover, as mentioned above in Section 3.6.2.3, VAB does
not support for data transport and soft-realtime capabilities are questionable. We may take
the VAB protocol into account. However, extending an external protocol also imposes
compatibility and sustainability risks if decisions for the underlying implementation (BaSyx) are
made, that conflict with our decisions.

3. As the non-Java service implementations are executed as local processes, also command line
input- and output streams provided by the operating system may be a low-risk option (as some
service candidates and many Unix command line programs do). Here, in particular the Java
side must carefully parse the output of the executed services/service environment not to
confuse “normal” output with data output. However, command line streams are said to be a
performance issue on Windows-based systems.

Currently, the Python ServiceEnvironment implements the third alternative using (generated)
object-to-string serializers with JSON as default wire format. We also use the command line streams
for the command protocol. On the Java side, specific classes are bound against the Python service
environment and the service deployment descriptor specifies the required service-specific Python
artifacts as well as the command line parameters. More specifically, as already indicated above, the
PythonAsyncProcessService is responsible for continuously running the Python
ServiceEnvironment and the PythonSyncProcessService is an experimental call-and-return
implementation of a Python service integration. While the PythonAsyncProcessService transmits
data and commands to the ServiceEnvironment, the PythonSyncProcessService transfers
only data items and calls Python upon each data item. Both integration classes support synchronous

IIP-Ecosphere Platform Handbook
79

and asynchronous return values. For alternative command communications, we envision a REST-based
extension of the Python service environment integration.

3.7.3.3 Validation
The service environment is subject to automated regression and integration testing. In particular the
monitoring classes are tested extensively [3]. Also, the remaining classes of the Java/Python service
environments are executed in regression tests, i.e., the Java based build environment also executes
Python unit tests. However, many methods are intended to be used by a stream-based application. As
done with the components before, a manual implementation of a test application and execution in
particular of the Spring service environment might be helpful here, but may fall short for the plain Java
environment (test metrics are currently accounted per Java project rather than across projects). While
currently the test coverage of the service environment could be increased, the classes defined there
are tested in terms of integration tests, e.g., through test artifact for the Spring Service Management
and Control implementation.

So far, no performance evaluations of the generated code and the underlying service environment
have been conducted. Therefore, the manually implemented service chains from the experiments
discussed in Section 3.6.3.3 could be used as baseline.

Besides service-level tests, performance experiments for the VAB poll approach have been performed
in [3]. Retrieving a meter via an AAS on a current Lenovo Z50-70 laptop requires 4-5 ms after a settling
time of 200 repetitions, whereby most of the time is attributed to the AAS communication. In contrast,
initial requests are comparatively slow (8-10 ms), probably an effect of JVM settling periods. Moreover,
some meters can schedule own update operations, which doubles the round-trip time. In the current
implementation, the MetricsProvider performs such updates only on request, thus, saving roughly
factor 2 response time in average. The internal operation of the meters, in particular parsing the JSON
information requires at maximum 70 µs, i.e., most of the response time can be attributed to
communication and AAS operations. A modification of BaSyx classes as mentioned above for a unified
data transport could also speed up these operations. A more extensive performance experiment is
presented in [4], showing that an integration of the transport layer with a monitoring values cache
attached to a remote AAS can be as fast as a local AAS on the monitored device. In other words, the
AAS that is updated in parallel is not impacting the data paths to other components, which are
informed via the transport layer (e.g., pub-sub).

Figure 36: Service states (comments cropped)

80
IIP-Ecosphere Platform Handbook

While the readings for the monitoring work fine, they are also just taken for individual measures rather
than for full AAS. Polling all monitoring information from an AAS may induce a significant response
time. Moreover, as detected during tests with the full platform components, a remotely deployed AAS
reads out all values of all properties during its serialization for client use. This implies significant
overhead and, more dramatically, in some cases even hang up the component. Thus, as indicated
above, we realized a second approach based on turning the metrics provider into a micrometer-based
JSON format and push this information into the (serialized remote) AAS. To avoid the problems
mentioned before, the information is not written into the functors or the AAS rather it is implemented
as a data instance shared by all functors of the service (represented by a submodel element). This
shared instance can quickly react during AAS serialization (significantly faster than the 4-5 ms
mentioned above) and initializes the transport connector lazily upon the first request. Moreover, this
approach decouples the startup of the AAS implementation server as only the platform transport
broker/server is used, which was already started along with the platform. Alternatively, for a plain AAS
realization (R7), we could have realized a similar push approach through an operation on server side,
but refrained from this idea as such a collector method shall not be part of the visible interfaces of the
platform.

However, the push approach via the Transport Layer could leave the impression that the work on
individual meters in an AAS is superfluous, in particular as the mechanism could equally be used to
realize the central platform monitoring (cf. Section 3.8). This is not the case as discussions with other
AAS users show: Nowadays, typical AAS tend to expose a huge amount of static and dynamic data for
the described assets, i.e., the expected/actual resource consumption is often mandatory in some form.

3.7.4 Service Control and Management
The Service Control and Management component defines the service-interface of a (compute)
resource towards the platform. It must provide means to load a service implementation onto the
resource (in terms of binary artifacts, e.g., from a central platform server), to identify the descriptive
information about services (id, name, description, version, service kind) and to provide access to
runtime capabilities, e.g., the state of the service, reconfiguration capabilities, or runtime monitoring
values. As the execution of the services happens within their (programing-language) specific
environment, the control and management component can be realized in generic manner.

Individual services must comply with a lifecycle that can be queried and influenced by the platform.
The underlying lifecycle state machine is depicted in Figure 36. Services can be downloaded from the
service store and become Available on the hosting resource. When triggered through the platform
and the ServiceManager, a service is deployed (Deploying) and gradually turns into the Running
state. If nothing bad happens at runtime, a service is stopped through the ServiceManager (turns to
Stopping and Stopped) and if requested, may be removed from the resource (Undeploying,
afterwards Unknown, not shown in Figure 36). At runtime, a service may be reconfigured, adapted or
migrated (which may need passivation and activation). Further, a service may fail, which can lead to a
recovery procedure (in the lower sub state machine in Figure 36). If the service becomes operational
again, it jumps back into the upper sub state machine and there into the last “normal operation” state
(via the UML H* deep history state) and goes on from there.

Figure 37 illustrates the design of the Service Control and Management component. At the core of this
layer is the ServiceManager, which performs operations such as starting and stopping individual
services. While the transitions displayed in black in Figure 36 are controlled by the ServiceManager,
the transitions in red are performed by the service and monitored (via AAS property value polls) by the
ServiceManager.

IIP-Ecosphere Platform Handbook
81

Figure 37: Service interfaces and management

82
IIP-Ecosphere Platform Handbook

 Services are packaged and transported in terms of artifacts, i.e., an artifact may contain multiple
services realized in different programming languages. Instead of the actual instances that may be
located in a different container, the ServiceManager primarily operates on descriptors, such as the
ArtifactDescriptor detailing structural information on contained services. Access to artifacts and
services happens through identifiers , whereby several operations and information accesses are
delegated by the service manager to the descriptors or through the respective AAS to the AAS
implementation server directly approaching the respective service instance.

Figure 38 illustrates the structure of a generated application artifact for execution with Spring Cloud
Stream. Here, an artifact consists of combined binaries provided by the service execution framework
(the startup code) and binaries that make up the application (below BOOT-INF, requiring a specialized
ResourceResolver, cf. Section 3.5.6). Within the application parts, such an artifact contains all
application dependencies (in lib) including, e.g., the service manager of the IIP-Ecosphere platform
and its transitive dependencies, but also generated parts such as the application interfaces (folder iip,
also containing the startup class for the Java service environment Starter.class), the Spring Cloud
Stream application specification (application.yml), the service deployment descriptor
(deployment.yml) and the logging configuration (logback.xml). Depending on the integrated
services, more artifacts may be included, e.g., reusable service binaries (here kodex.zip), customized
service artifacts (kodex_pseudonymizer.zip) or the Python code for executing a Python service in
the Python service environment (python_kodexPythonService.zip). Such specific binaries are
referenced in the deployment descriptor and unpacked by the service manager upon start.

Figure 38: Structure of a JAR application artefact for the Spring Cloud Stream engine.

The packaging shown in Figure 38 represents an executable Java ARchive (JAR) and may even be
executed without the platform (provided that a respective setup, e.g., communication ports are given).
In principle, this is also one major functionality of the service management - besides passing
environment settings such as (dynamic) ports to the services stored in the service artifact. However,
as an executable JAR, the packaged Spring application sets up an own class loading mechanism, which
prevents shared libraries, i.e., libraries that must not be packaged into the artifact to reduce the
footprint of the artifact. However, modifications to this startup procedure are not permitted, e.g., an

/
org

BOOT-INF

META-INF

springframework
boot

loader
…

Unpacked startup code of Spring Boot/Cloud Stream
(standard JAR packaging)

MANIFEST.MF
maven

classpath.idx
layers.idx
lib

transport-0.3.0-SNAPSHOT.jar

…
classes

iip

myServiceImp-0.1.0-SNAPSHOT.jar

datatypes
interfaces
serializers
Starter.class

application.yml
deployment.yml
logback.yml
kodex.zip
kodex_pseudonymizer.zip
python_kodexPythonService.zip

Java meta information and main class entry pointing
to Spring startup code (standard JAR packaging)

Index files created by Spring Boot packager to
support class loading

Re-packaged Java libraries as uncompressed jar files,
including platform parts, dependencies and Java
service implementation

Generated application interfaces for platform,
including interfaces for this application as well as
generated Starter class for Java service environment.

Application (custom Spring packaging, handled by Spring class loader)

Generated application resources: Spring Cloud Stream
application specification, IIP-Ecosphere service
deployment descriptor and logging configuration.
Generated application binaries, e.g., KODEX binaries, customization
service based on KODEX (prefix kodex_), ZIP for Python service including
Python service environment (prefix python_).

IIP-Ecosphere Platform Handbook
83

additional, earlier class loader. To allow for shared artifacts, the service management supports a
secondary format, which is independent of Spring. This packaging structure is shown in Figure 39.

Figure 39: Structure of a ZIP application artefact allowing for shared libraries (as variant of Figure 38).

In contrast to Figure 38, the ZIP-based artifact is not an executable JAR and contains packaged rather
than unpacked JARs. The application JAR including the generated class iip.Starter must be in the
top-level directory of the ZIP. There must also be the service deployment descriptor
(deployment.yml) so that the service manager can read the information about the contained
services. Moreover, also the “binary” artifacts, e.g., for KODEX or python must be on top-level, so that
the service manager can extract the artifacts for executing them in terms of operating system
processes. In contrast, the Spring application definition (application.yml) and the logging
configuration shall reside in the generated application artifacts as they will be loaded by the respective
Java libraries on demand via class loading. The dependencies of the application are located in the jars
folder (or optionally on top-level). Here the difference to Figure 38 is that any shared jar can easily be
removed from that folder (during the packaging process or manually for experiments) and provided
through a shared libraries folder83 known to the service manager. Optionally, the file may contain in
the file classpath a listing84 of Java libraries in their intended sequence to avoid conflicts.

The ServicesAasClient provides access to the properties and operations of the AAS of the service
layer. To avoid adding even more visual complexity to Figure 37, we did not indicate the relation
between ServiceManager and ServicesAasClient. Actually, both implement the same interface
called ServiceOperations, which contains the basic operations of ServiceManager not requiring
the (repeated, potentially inconsistent instantiation of) service descriptors. The ServicesAasClient
can be used by upstream layers to conveniently access the services AAS.

Typically, services can operate as a single process and do not require further resources, e.g., a central
server process to communicate with. However, there are services with this requirement, e.g., the
anonymizer and pseudonymizer KODEX (cf. Section 3.9.1), which optionally may cooperate with a
server instance, or a federated learning approach, which usually requires a central model management
and exchange server. There are settings, where such server processes may be installed and controlled
by the user, but we can also have application-specific server processes, which shall be integrated into
the lifecycle of an application, and, thus, be started and stopped along with the application by the

83 Currently, this folder is specified in the setup information of the service manager. This information could be
relocated into the service deployment descriptor in future versions of the platform.
84 Relative file names in Windows or Linux notation, separated by : or ; depending on the operating system.
Such a file can be created by Maven. Before execution, the file is rewritten to comply with the @ argument file
format of Java 9 and newer. Thereby, the JARs in the root folder of the archive are added by the service
manager to the start of the classpath. If no such file is present, a wildcard classpath is constructed, which may
cause accidental class loading conflicts.

/

jars
transport-0.3.0-SNAPSHOT.jar

…
myServiceImp-0.1.0-SNAPSHOT.jar

deployment.yml
kodex.zip
kodex_pseudonymizer.zip
python_kodexPythonService.zip

Java libraries of the application (compressed JAR),
including platform parts, dependencies and Java
service implementation. Must contain jakarta.el-
3.0.3.jar (with that name or related versions).

Generated application resources for pre-Spring startup: IIP-
Ecosphere service deployment descriptor, generated
application binaries, e.g., KODEX binaries, customization
service based on KODEX (prefix kodex_), ZIP for Python service
including Python service environment (prefix python_).

myApp-0.1.0-SNAPSHOT.jar
Generated application classes, must contain iip.Starter
and application.yml

classpath Optional listing of JARs in the classpath in sequence,
separated by : or ;

84
IIP-Ecosphere Platform Handbook

platform. Moreover, certain applications may require some form of interaction with the server, e.g.,
to re-configure KODEX at runtime or to request the replay of a model snapshot of a federated learning
server. It is desirable that such interactions happen in a uniform manner so that application
components can rely on the approach. For the IIP-Ecosphere platform, it would, thus, be desirable to
represent such server processes within the platform AAS and to allow, e.g., for runtime re-
configuration of service parameters (which may also trigger a model exchange). Furthermore, it would
be desirable that the resource which hosts the server process can, as for services, be decided freely
within the available resources of a platform instance. Moreover, a uniform, standard-compliant
communication between client and server would be desirable, most preferably via the Transport
Component (cf. Section 3.6.2) of the IIP-Ecosphere platform to also exploit the flexible exchange of
protocols. However, directing an externally determined communication via the Transport Component
may require changes to the server/service to be integrated, which may not be possible in all cases, for
which we prioritize this requirement as optional, i.e., to be decided based on the server/service at
hands.

While we believe that in most cases the open service concept of IIP-Ecosphere is also applicable to
services in a server/service setup, the server side requires specialized capabilities. In general, we
consider a server as a realization of an (internal) service, which does not exchange data via the service
input/output interfaces. This allows for utilizing AAS publishing, distribution, re-configuration and
execution mechanisms of usual services, in particular the service environments for Java and Python,
while not requiring an input/output modeling for the internal service/server communication in the
configuration model (cf. Section 6). For this purpose, some server-specific capabilities had to be added
to the service environments, e.g., that services know the (optional) service/server communication
channel they are relying on. It further requires specialized capabilities such as assigning server
processes to an application (in the configuration model), registering and announcing the actual server
network information via the platform network management (cf. Section 3.5.2), starting/stopping
server processes along with applications (while maintaining the number of using service instances
using these in the platform network management) or provisioning of specialized transport streams for
(private) service/server communication. The required capabilities are partially realized in the service
manager and partially in the service environment as generic or specific functionality of basic service
functionality.

Different technologies can be used to realize and execute service chains, i.e., to efficiently pass data
along pre-defined data paths between the services, to transform data where needed etc. As part of
such a service chain, data is turned into some form that can be transported by the utilized protocols.
This serialization as well as the transformation of data to fit the input/output requirements of a service
is part of the mechanisms of the Transport Layer. As discussed in Section 3.6.2, we rely on Spring Cloud
Stream as default (stream-based) service execution engine. An integration of the transport level
protocols and serialization mechanisms for Spring Cloud Stream was introduced in Section 3.6.2. As
also stated there, we foresee that the IIP-Ecosphere platform shall support also other service engines
in a flexible manner. Thus, the design of the Service Control and Management Component must allow
for the execution of the management binding against alternative service execution technologies. For
this purpose, the ServiceManager as well as the related descriptors are defined in Figure 37 as
interfaces (in the package services), while the actual implementation is realized in a separate,
alternative package (services.spring for the default engine), which hooks itself as implementation
into the basic service management interfaces via JSL.

The default implementation of the ServiceManager in services.spring relies on Spring Cloud
Stream, the Spring deployer mechanism and, in turn, on the Spring Boot framework. For Spring-based
services, the packaging happens in terms of specifically packed JAR files (a form of “fat”, standalone
JAR files also containing the required Spring base classes). Besides the Spring application configuration

IIP-Ecosphere Platform Handbook
85

defining the actual wiring of the services, such artifact JAR files contain a deployment specification
detailing the services, their communication, service dependencies and, if required, also non-Java
service implementations and their integration. Following the conventions of the platform, these
deployment specifications are stated in terms of YAML files. Both, the Java object representation of
the YAML contents as well as the JAR artifacts are linked against the Spring-specific Artifact and Service
Descriptors, which contain additional information required to manage services using Spring. The
Spring-based ServiceManager utilizes the Spring deployer mechanism, i.e., the local Spring
deployer. The deployment specification also allows defining external service implementation
processes, e.g., for Python, so that the data communication is managed by Spring-services while the
actual implementation of the service operates in an own process. By default, services are executed in
their own processes so that services can be restarted in case of failures (R9) without accidentally
shutting down healthy services. However, such a single-process deployment may not be desired in
some cases so that the deployment descriptor allows for specifying “ensemble” services, i.e., Spring-
services that must be executed within the same process.

The AAS for the Service Layer consists of a services sub-model indicating as sub-model element
collections the (locally) installed artifacts and the contained services, the installed services and their
properties as well as the data paths/relations among services. When a service is started, its state
changes and for each data path a relation instance is created, i.e., a relation represents the instantiated
data path between two service instances and points to the actual start and end service. Start and end
service occur in the AAS as soon as the respective service is created. In turn, this information is used
by the service manager to determine available services, e.g., during startup of dependent services in
service chains. Most operations provided by the ServiceManager (also via AAS) are parameterized
by an artifact or service identifier. However, internally the operations are bound to the resource the
respective artifact/service is installed on, so these operations do not occur at the services in the
services collection rather than for the resource in the resource collection. We will detail the resources
in Section 3.8.1 as part of the design of the ECS runtime. As all those operations may fail, the
implementation must not only return a result but also carry information about thrown exceptions
when calling an AAS operations.

The service manager AAS is primarily intended as service-level control and monitoring interface.
Services are supposed to register themselves with the respective local AAS command server (see also
Figure 5 in Section 3.1) to react on command requests. Similarly, when monitoring information is
requested, the (central or locally deployed) AAS communicates with the respective AAS command
server. In case of services not implemented in Java, the respective service environment must provide
an AAS command server and pass the information on to the service instances.

As discussed above, soft-realtime data streams shall not be transmitted through AAS rather than
through the streaming engine (for our default engine using one of the protocols of the transport layer).
If the service implementation is done in Java, the streaming engine will directly communicate with the
service (potentially involving glue code generated from the platform configuration). If non-Java service
implementations are used, the service representation in the streaming engine must route the data to
the respective service environment, which shields the services from the actual communication and
passes the data in adequate form to the respective service instances.

The requirements in [13] do not explicitly define the properties that shall be monitored for services.
R29a, R70, R122f just indicate that services may have quality properties, e.g., to support adaptive
service selection. Monitoring probes may be generic or bound to the services and, thus, are realized in
the service environment (in particular the default one for Java, cf. Section 3.7.3). Similarly, the creation
of related parts of the AAS are realized there. Further, probe services may be inserted to perform
application-specific monitoring. However, probe services are currently not realized.

86
IIP-Ecosphere Platform Handbook

The ServiceManager and its AAS are validated in terms of regression tests. As the ServiceManager
and the descriptors are interfaces/abstract classes, the validation must set up a pseudo
implementation for basic testing. The Spring Cloud Specific functionality is tested through a
handcrafted service artifact with simple contained services and multiple deployment descriptor
targeting different artifacts, e.g., with or without process ensembles. This artifact is based on the Java
service environment (cf. Section 3.7.3). In these tests, the setup of the ServiceManager provides a
broker, dynamic network settings are handled by a local NetworkManager and the service manager
is utilized for starting and stopping services. The running services are validated in terms of their data
throughput and the actual metric values that the services provide, i.e., that the metrics defined in the
service environment (cf. Section 3.7.3) become part of the AAS of the service management. Moreover,
also the dynamic aspects of the AAS are validated, in particular during startup in order to figure out
whether a service is already running.

Furthermore, the Spring Cloud based Service Manager was validated in a Linux VM-based server
setting as well as on a Phoenix Contact AXC 315285 PLC-Edge with 2 GByte RAM and 8 GByte memory
card providing additional hard disk space. On the Linux server, the Service Manager was executed
directly on the operating system as well as in a Docker Container, on the AXC we focused only on the
Docker setup. In both cases, we were able to manage a simple demonstration application (adding the
artifact, starting, stopping, removing the artifact) and to verify that the expected input/output
behavior of the services can be observed. As starting and stopping individual services involves
powering up a JVM, the service manager takes a certain operation timeout (with a default length of 30
seconds) into account. This is sufficient for the Linux server (and the regression tests mentioned
above), but does not work on the AXC 3152, where a longer timeout is needed.

Currently, as prescribed by the development streams in Section 3.2, design and realization focus on
the distributed management of services. Advanced capabilities such as switching among alternative
services or migrating services are subject to a later release.

85 https://www.phoenixcontact.com/online/portal/de?uri=pxc-oc-
itemdetail:pid=1069208&library=dede&tab=1 provided by Phoenix Contact to the SSE group of the University
of Hildesheim https://sse.uni-hildesheim.de/aktuelles/detailansicht/weltweiter-marktfuehrer-unterstuetzt-
universitaet-hildesheim-im-bereich-industrie-40/

https://www.phoenixcontact.com/online/portal/de?uri=pxc-oc-itemdetail:pid=1069208&library=dede&tab=1
https://www.phoenixcontact.com/online/portal/de?uri=pxc-oc-itemdetail:pid=1069208&library=dede&tab=1
https://sse.uni-hildesheim.de/aktuelles/detailansicht/weltweiter-marktfuehrer-unterstuetzt-universitaet-hildesheim-im-bereich-industrie-40/
https://sse.uni-hildesheim.de/aktuelles/detailansicht/weltweiter-marktfuehrer-unterstuetzt-universitaet-hildesheim-im-bereich-industrie-40/

IIP-Ecosphere Platform Handbook
87

3.7.5 Requirements Discussion
In this section, we review the already realized requirements for this layer. As mentioned in the sections
before, we aimed for a basic implementation in this release, which is reflected accordingly in Table 11.

Table 11: Review of realized80 requirements for the Service Layer (based on Table 2, Table 3 and Table 10)

Requirement Summary
R4a Services with input/output in ServiceDescriptor and AAS (services sub-

model)
R4b, R131b Metadata in ServiceDescriptor and AAS (services sub-model)
R4c State in ServiceDescriptor and AAS (services sub-model)
R4d The generic execution state of Spring Cloud Stream is supervised, also the resource

consumption and stream processing or applications can define custom metrics.
The state is reflected into the service descriptor, state and monitoring information
(as far as enabled) show up in the AAS (services sub-model). So far, services are not
re-started if they fail as this is not provided by the Spring Local Deployer.

R4e Not yet implemented, but possible e.g., through service descriptor.
R4f Possible via probe services with specific interface.
R20 Application-specific data paths are supported through the streaming library (by

Spring Cloud Stream, even at runtime). Data paths are dynamically indicated in the
AAS (sub-model relations).

R20b Data paths can have properties/parameters. Basic properties like the protocol or
the encoding are supported by Spring Cloud Stream. Additional properties can be
specified in the service deployment descriptor (Yaml file in artifact).

R20c Data paths shall be managed by the platform through the configuration (Section
6), code generation, Spring application setup/service deployment descriptor and
during service startup, e.g., taking dependent services into account.

R29a, R70,
R122f

Services describe their functionality and their runtime properties (as provided,
selected, implemented) through the Service Management and Control AAS, in
particular supported by service monitoring.

R31 A container shall contain only the required components/services. This is supported
through the service artifacts/containers, that are generated from the configuration
model for a certain target deployment, i.e., with the (minimal) required resources.

R31 Required components and dependencies can be specified in the configuration
R31b Artifacts may contain optional components, which are then not executed. Optional

services and their wiring is not subject of this release.
R31c, R69 Dynamic exchange of service implementations is prepared by separating service

implementation and (generated) binding against the stream processing library. The
service interfaces allow for dynamic exchange and service migration and the
operations are available through the AAS of the service management and control
component. The realization of the operations was not part of this development
stream/release.

R32 Services can declare and describe typed parameters. The ServiceManager
supports changing these configuration parameters.

R38-R68 A variety of security and privacy mechanisms are introduced (e.g. in Figure 20)
which ensure relevant security and privacy requirements. Security mechanisms are
indicated in the architecture but not part of the platform implementation of this
release.

R73a-f, R79 As argued for the Transport/Connector components, we do not limit or prescribe
types.

R113 In the first place, the ServiceManagement and the stream processing approach
are both realized in Java. Services realized in Java can be directly integrated with
the stream processing and be executed in the same threads/processes. Python

88
IIP-Ecosphere Platform Handbook

Requirement Summary
Service implementations can be integrated through generic processes, classes and
the Python Service environment, so far based on command-line process streams.
The use of specific Python frameworks as requested in R113a belongs to the
realization of the AI service toolkit.

R132 Application-specific services are supported through service interfaces as well as
integration of artifacts in the code generation and packaging process.

R133 Runtime support for applications (status of services) is provided via the
ServiceManager and the AAS.

R133a The status of services is provided via the ServiceManager and the AAS
R133c Within the limits of the service state machine, the ServiceManager and the AAS

provide means for adjusting the state of a service. In particular, functions for
activating, passivating and migrating services are provided and generically
implemented.

R133d No specific functionality to resolve error conditions is provided in this release.
R134c The ServiceManager supports stopping as well as removal/disposal of services

and service artifacts.
R135 An operation for updating services is provided and available through the AAS, but

the operation itself is not implemented in this release.

We conclude, that most of the basic requirements for this layer are already implemented. Advanced
functionality such as dynamic service operations or monitoring as well as security and data protection
mechanisms are subject to one of the next releases.

3.8 Resources and Monitoring Layer
The Resources and Monitoring layer enables the deployment of services to (edge, server, cloud)
devices, allows for overarching management of the devices and provides aggregated monitoring
information about running resources and services. Moreover, the first platform components for the
overall management of resources, namely the device management and the platform monitoring are
located in this layer. We will discuss the ECS runtime in Section 3.8.1, the device management in
Section 3.8.2 and the monitoring in Section 3.8.3.

3.8.1 ECS runtime
Flexible and heterogeneous deployment to edge, server and cloud devices is a central capability of the
IIP-Ecosphere platform. [13] defines several requirements for the envisioned deployment approach.
Table 12 summarizes the requirements to be considered. R25c and R25d target the (central)
management of resources and, thus, are addressed by the device management in Section 3.8.2.

Table 12: Specific requirements for the heterogeneous deployment (excluding configuration)

Requirement Summary
R23 Support for dynamic deployment
R24 Deployment to different types of resources/hardware
R25 Resource properties or functionalities described as AAS
R25a AAS of a resource shall be realized by an ECS runtime
R25b AAS of available resources must be announced to the platform
R25e Resource AAS must describe static properties
R25f, R103a Resource AAS must describe dynamic properties, e.g., the resource utilization, the

memory usage or the utilization of CPU/GPU/TPU cores
R25g Resource AAS must contain functions for the deployment
R25h Resource AAS shall contain functions for exchanging deployment units at runtime
R26 Deployment to on-premise resources

IIP-Ecosphere Platform Handbook
89

Requirement Summary
R27 Optional deployment to connected IIP-Ecosphere instances
R28 Optional deployment to cloud resources, e.g., Google Cloud or Gaia-X
R29 Deployment unit must provide an explicit interface in terms of an AAS
R29a (Quality) properties and functional interfaces of deployment unit via AAS
R29b Deployment unit AAS shall be linked to resource AAS
R29c Contained services/containers shall be made available via the deployment unit AAS
R30 Deployment unit must be encapsulated as container
R30a Deployment units on IT level must be technologically uniform
R30b Deployment units on OT level can be technologically different
R30c Platform can support the integration of external container repositories
R31 Container shall contain only the required components/services
R31b Containers can contain optional components
R31c Components/services in a container may be exchanged dynamically
R32 Container can contain data/models, to be configured via parameters
R33 Container can contain local data stores
R35 Sampling rate of 2 ms through container
R36 Optional configuration of resources
R36a Writing of resource configuration
R36b Reading of resource configuration
R37 Optional remote maintenance of resources
R38-R44 Security requirements
R45-R68 Data protection requirements
R102 The platform must allocate deployment units to available resources.
R105 Deployment must happen via platform functions and AAS.

As described in [41], each device shall execute a basic runtime component (ECSRuntime) providing
the AAS of the device and managing the containers in which individual services are executed. Figure
40 illustrates the design. The fundamental parts are the ResourceUnit representing the AAS of the
resource on which the runtime component is executed as well as the DeploymentUnit containing
the services executed on the resource. The Service Management and Control component from Section
3.7.3 contributes information to the DeploymentUnit, e.g., the running services and their
instantiated relations. Through the ECS runtime, the device can receive and execute commands from
the platform, such as downloading or starting a container. Moreover, different container technologies
must be considered and addressed in a uniform manner through the ECS runtime.

Different ways to install such an ECS runtime are possible depending on the capabilities of the
underlying device. The default approach is to provide an automatically created container with the
instantiated ECS runtime as well as one or multiple (dynamic) containers for the services. Depending
on the capabilities of the device, e.g., whether a suitable version of Java is available, the ECS runtime
could also directly be installed on a device. If in the future a resource description such as the AAS of
the ECS runtime is standardized (and IIP-Ecosphere platform is compliant with that standard), one
could also imagine that the device already ships with an ECS runtime (possibly realized in some other
language than Java) or it can be installed from the store of the device vendor. Measures to install,
manage and update such installations are subject to the device management (Section 3.8.2).

90
IIP-Ecosphere Platform Handbook

Figure 40: ECS runtime for Service Deployment (comments partially cropped)

As already emphasized in [41, 13], one fundamental basic work for the resource abstraction runtime
is the LNI 4.0 edge configuration usage view [26]. [41] subsumes and extends [26] and [13] integrates
relevant requirements from [41]. As the need for managing resources and containers on resources, in

IIP-Ecosphere Platform Handbook
91

particular edge devices, is known in Industry 4.0, platforms [35] and also other work address this topic
in various ways. In addition to the 21 platforms analyzed in [35], also approaches like OpenHorizon86,
the IBM Edge Application Manager87 or the ICP4Life platform [27] have been researched or are
available. In recent time, also container orchestrators such as Kubernetes88 became popular. Although
there are significant overlaps, there are also important differences between these approaches and the
ECS runtime in IIP-Ecosphere. One main difference is the general requirement R7 that all interfaces in
the IIP-Ecosphere platform shall be based on AAS aiming at an interoperable integration of
heterogeneous devices (based on an agreed structure, at least within IIP-Ecosphere). Moreover, it is
important to point out that IIP-Ecosphere aims at a flexible integration of components leaving the final
decision to the installing company through the configuration model, i.e., we do not make decisions
such as statically relying on Kubernetes. In contrast to existing edge management approaches, as
already pointed out in [41], IIP-Ecosphere aims at supporting more sophisticated management
operations on the edge, in particular for data paths and relations as discussed in Section 3.7. Also
platforms have been created as part of research projects, e.g., ICP4Life [27]. However, not all of these
platforms are publicly available and suffer from similar overlaps and differences, e.g., the strong focus
of IIP-Ecosphere on AAS and AI.

Figure 41: Container states

Figure 40 illustrates the design of the ECS runtime component. Figure 3 in Chapter 3 already discussed
the context/stack for this component, i.e., on top of the AAS support, network management, transport
and connectors and (optionally) service layer, the ECS runtime is supposed to provide a resource
abstraction to manage the containers containing services to be executed on a resource. At the heart
of the component is the ECSRuntime which acts as internal façade39 for the ECS runtime AAS. Behind
that façade, the actual operations are realized to be able to customize the ECS runtime for the resource
at hands. Two example devices (produced by Phoenix Contact or Lenze) are indicated in Figure 40, but
also a GenericJavaRuntime, which relies on an abstract ContainerManager (along with a
ContainerDescriptor, akin to the service descriptors in Figure 37). Akin to the service manager,
the container manager provides AAS operations, e.g., to download, start or stop a container. The
respective container states are depicted in Figure 41.

86 https://www.lfedge.org/projects/openhorizon/
87 https://www.ibm.com/docs/en/edge-computing/4.1
88 https://kubernetes.io/de/

https://www.lfedge.org/projects/openhorizon/
https://www.ibm.com/docs/en/edge-computing/4.1
https://kubernetes.io/de/

92
IIP-Ecosphere Platform Handbook

Figure 42: Example deployments to empty (left) and loaded (right) edge device (comments and further deployment nodes
representing the platform partially cropped)

IIP-Ecosphere Platform Handbook
93

Partially, device-specific functionality is supposed to be realized via other plugins, e.g., target-system
specific implementation of the SystemMetrics (cf. Section 3.5.4) or how to provide and access to
the device AAS. It may be that the device is already older and does not provide an AAS. For this
purpose, the ECS runtime allows to customize the AAS origin via the
DeviceAasProviderDescriptor (not shown in Figure 40), which determines the component that
returns the address of the respective device AAS (the component may also create the AAS if needed).
Currently, three implementations of the related DeviceAasProvider are shipped with the platform,
a pragmatic one reading the AAS from a simple Yaml file (reading manufacturer/product images from
the same location), an implementation reading the AAS from an AASX package file and a multi-provider
that selects the first provider (by default Yaml or AASX) that returns an AAS address. For the Yaml/AASX
providers, the underlying information is retrieved as classpath resource, either as
nameplate.yml/deviceId.yml or device.aasx/deviceId.aasx, respectively whereby deviceId is
taken from the IdProvider of the support layer. This is currently the most easy and compliant way
to specify device-supplied services and their properties, e.g., port or protocol version.

The IIP-Ecosphere platform provides a plain Docker89 container manager
(DockerContainerManagement). As for the service descriptors, the ContainerDescriptor is
manifested in terms of a Yaml file, which is supposed to form the main entry point for adding a
container at runtime, i.e., the platform specifies a URI pointing to the Yaml file, which indicates the
name of the packaged container at the same location. We refrained from adding the descriptor to the
packaged container as this may not be permissible for some container formats. In addition, the IIP-
Ecosphere platform offers an LXC container manager. We selected LXC [38] due to the use in other
industrial platforms [35] and as Docker changes its (commercial) licensing. It is important to mention
that LXC is licensed under GPL and, thus, must be an optional component of the IIP-Ecosphere platform
due to platform licensing rules. LXC is integrated via the Java LXD library JLXD90 and requires specific
installation steps, which are detailed in [38]. In the current state, it is not supporting all container
creation strategies and may be limited regarding a container registry. A container manager for
Kubernetes via Industry 4.0 protocols (R7, R14a) is in development but not part of this release.

The EcsAasClient provides access to the properties and operations of the AAS of the resources layer.
To avoid adding even more visual complexity to Figure 40, we did not indicate the relation between
ContainerManager and EcsAasClient. Both classes implement the same interface called
ContainerOperations, which contains the basic operations of ContainerManager not requiring the
(repeated, potentially inconsistent instantiation of) container descriptors. The EcsAasClient can be
used by upstream layers to conveniently access the ECS runtime AAS.

At a glance, Figure 40 does not indicate much monitoring support for the ECS runtime except for some
AAS properties in ResourceUnit. As the Java service environment (cf. Section 3.7.3) provides a generic
and extensible monitoring approach, we re-use it here although the ECS runtime is not a “service”.
Thus, the ECS runtime defines a MonitoringProvider as well as a regular monitoring update operation
that is started as part of the JSL lifecycle descriptor of the ECS runtime (not detailed in Figure 40). The
operations to create the AAS refer to the MetricsAasConstructor of the Java service runtime mirroring
a default set of meters of the monitoring provider into the AAS of the ECS runtime (therefore, currently
some runtime properties in ResourceUnit are realized while others appear as omitted). Depending on
future decisions, a specific set of resource meters can be defined and applied to both components in
uniform manner.

89 https://www.docker.com/
90 The official repository is at https://github.com/digitalspider/jlxd. However, due to required bugfixes and the
need for a deployment to Maven central, which was not provided by the original authors, we rely on a fork of
JLXD, which is part of EASy-Producer https://github.com/SSEHUB/EASyProducer.

https://www.docker.com/
https://github.com/digitalspider/jlxd
https://github.com/SSEHUB/EASyProducer

94
IIP-Ecosphere Platform Handbook

Figure 42 illustrates two potential deployments to aforementioned example devices (including AAS
server components, deployment interactions, a broker server and stereotypes from the
UMLsec/security profile).

The AAS of this component is represented by EcsAAS, actually the resources sub-model already
mentioned in Section 3.7. This sub-model consists of the ResourceUnit instances (corresponding to
single ECS runtimes) representing the resources and the installed/running Container instances. The
ResourceUnit offers the operations to manage containers on the respective resource. Moreover,
ResourceUnit is extended by service operations if the resource offers a ServiceManager (either
installed in the same or in a different container on the same resource) as discussed in Section 3.7.

As for the generic IIP-Ecosphere components, regression tests validate the basic operations of the ECS
runtime, i.e., an artificial test container manager and its AAS. For the Docker-based container
management, the regression tests utilize a small Open Source container image and exercise the
implemented operations. Akin to services, currently advanced container operations such as update
and migration are not implemented.

Experiments with containers and AAS indicate that properties and operations work as expected. Simple
operations can be executed in at maximum 5 ms runtime (or significantly less for monitoring properties
as discussed in Section 3.7.3). Complex operations, e.g., starting a container depend on the time that
is required by underlying operation of the container implementation, e.g., Docker. Direct execution on
a non-virtualized operating system was not necessarily better in this regard. However, this experience
strongly depends on the AAS and protocol implementation and, thus, is not representative.

We also validated starting Docker containers via the ECS runtime and the container manager, running
the ECS runtime directly on the underlying operating system as well as running the ECS runtime in a
Docker container. For the latter, a Docker-out-of-Docker (DooD)91 setup is required. Moreover, to
achieve a certain genericity of the ECS runtime container, it is advisable to mount the containers via a
folder of the host operating system into the ECS runtime container. The functions of the container
management were validated on a Linux virtual machine running on a VMWare ESXi server as well as
on the Phoenix Contact ACX 3152 mentioned in Section 3.7. As the container operations require a
certain execution time, the minimum overhead created by an AAS-based management operation is
not relevant here. The service capabilities are validated in several examples, most under regression
testing, as well as some public demonstrators (cf. Section 6.6). The service/server functionality is
currently subject to regression testing as well as the preparation of upcoming public demonstrators.

It is important to mention, that the sizes of the Docker container depend on the platform and
application services that are installed. An ECS runtime with a DooD setup requires a container of
around 1.1 GByte size (packed image of 444 MBytes), a service manager demands 509 MBytes (336
MBytes packed image) and a combined installation of ECS runtime and service manager into one
container 600 MBytes (286 MBytes packed image). All containers can be installed and executed
successfully even on an AXC 3152, typically with the platform server and the central broker installed
on a server, e.g., the Linux virtual machine mentioned above. The running containers in idle mode
allocate roughly 200 MBytes main memory (1.4 GBytes remain free on the AXC 3152), although at least
3 JVMs (ECS runtime, Service Manager and a local broker for the services) are running. If a simple
service chain with 2 services is started, further 400 MBytes are allocated by one JVM per service, i.e.,
roughly 800 MBytes to 1 GByte memory remains free on the AXC 3152. Here, dependent on the actual
load and service demands, we allow for some optimizations, e.g., to combine services with process
backends, e.g., Python into the same JVM (ensemble services) or to limit the maximum memory
allocation of the involved JVMs adequately. For the latter, the platform configuration model allows

91 http://tdongsi.github.io/blog/2017/04/23/docker-out-of-docker/

http://tdongsi.github.io/blog/2017/04/23/docker-out-of-docker/

IIP-Ecosphere Platform Handbook
95

settings for the platform services as well as for individual application services, which are turned into
executable artifacts by code generation (cf. Section 6).

Table 13: Review of realized80 requirements for the ECS runtime component.

Requirement Summary
R23 The ECS runtime provides the basis for dynamic deployment units. The actual

deployment units are packaged during code generation for the configuration
model. Automatic creation of containers was started but the realization is not
completed.

R24 Generic and specific implementations of the ECS runtime aim at supporting the
deployment to different types of resources/hardware. So far, we provide a generic
ECS runtime in Java with a default container manager for Docker.

R25 Common functionalities of the resources (as well as service operations) are
defined in the AAS of this component. The AAS also reflects the monitored
resource meters of an ECS runtime instance.

R25a The AAS of a resource is realized by the IIP-Ecosphere ECS runtime.
R25b The AAS can and shall be deployed to a central platform AAS, in particular to

integrate with the service management operations. This may have to be
complemented with a registration function in the resource/device management (cf.
Section 3.8.2).

R25e Basic static properties are provided such as resources hosting a container.
R25f, R103a The AAS also reflects the monitored resource meters of an ECS runtime instance.

More specific meters can be added through the system metrics plugin.
R25g Resource AAS (ResourceUnit) defines functions for the deployment.
R25h Resource AAS (ResourceUnit) does contain functions for exchanging deployment

units at runtime, but the functionality is currently not implemented.
R26 Deployment to on-premise resources is supported by the ECS runtime.
R27 Optional deployment to connected IIP-Ecosphere instances is intended for the third

development stream and, thus, currently not realized.
R28 Optional deployment to cloud resources, e.g., Google Cloud or Gaia-X is considered

in the third development stream and, thus, this requirement is currently not
realized.

R29 The deployment unit provides an explicit interface in terms of an AAS.
R29a Functional interfaces as well as quality properties of a deployment unit are

provided via AAS.
R29b The deployment unit AAS is linked to the resource sub-model and the services sub-

model.
R29c Contained services/containers are available through the deployment unit AAS.
R30 A deployment unit is encapsulated as container, in particular the services are

encapsulated in artifacts to be deployed individually into containers.
R30a Deployment units on IT level shall be technologically uniform, through the general

use of Docker containers. The ContainerManager supports the exchange of the
respective implementation/integration.

R30b Deployment units on OT level can be technologically different, but we aim for
Docker as the default technology. The ContainerManager supports the
exchange of the respective implementation/integration.

R30c The platform supports the external container repositories as full container name in
the container descriptor. A container descriptor is specified via a URL, which may
also point to an external descriptor location and further on to an external
container repository.

96
IIP-Ecosphere Platform Handbook

Requirement Summary
R31 A container shall contain only the required components/services as discussed in

Section 3.7. This depends on the packaging, for which an automated approach is
not part of this release.

R31b Artifacts may contain optional components, which are then not executed as
discussed in Section 3.7. This depends on the packaging, for which an automated
approach is not part of this release.

R31c Components/services in a container may be exchanged dynamically as supported
by the service management in Section 3.7. However, this functionality is not part of
this release.

R32 Container can contain data/models. These are artifacts in the containers and
respective (typed) parameters are offered by the services cf. Section 3.7. So far,
the packaging of further resources is not realized.

R33 A container can contain local data stores (in terms of services cf. Section 3.7). Data
stores are not part of this release.

R35 AAS operation/access speed in containers was around 5 ms. A sampling rate of 2
ms through a container is plausible, but must be shown in future experiments.

R36 Configuration of resources is part of device management, currently not completely
realized and intended for a later development stream.

R36a Configuration of resources is part of device management, currently not completely
realized and intended for a later development stream.

R36b Configuration of resources is part of device management, currently not completely
realized and intended for a later development stream.

R37 Remote maintenance of resources is part of device management, currently not
completely realized and intended for a later development stream. This can
potentially be integrated with container orchestrator operations.

R38-R44 Security mechanisms are indicated in the architecture but not part of the platform
implementation of this release.

R45-R68 Data protection mechanisms are indicated in the architecture but not part of the
platform implementation of this release.

R102 The platform allocates deployment units to available resources.
R105 Deployment happens via platform functions and AAS.

We conclude, that basic requirements for this layer are implemented. However, in comparison to the
service management, connectors or transport component, in this component more advanced
functionality is dependent on the automatic creation of containers or the device management. These
components are scheduled for future releases.

3.8.2 Device/Resource Management
The device management shall support and ease the administration of devices, i.e., compute resources.
As stated above, e.g. along with the ECS runtime in Section 3.8.1, the notion of devices in IIP-Ecosphere
is rather broad as it involves edge, cloud and (on-premise) server devices. From a practical point of
view, the scope includes all devices that potentially can run an ECS runtime (including the IT
infrastructure from [41]) and/or a Service Manager. Also, different forms of installation for an ECS
runtime as discussed in Section 3.8.1 are subject to the device management. It is important to recall
that following [41], Industry 4.0 field devices such as machines are out of scope for the IIP-Ecosphere
platform.

From [13] we know that the main requirements for the device management (as summarized in Table
14) refer in particular to the "Device Description Store", the "Device Configuration Tool" and the "ECS
runtime" introduced in [41]. This includes the abstraction of vendor dependencies (R25.a),

IIP-Ecosphere Platform Handbook
97

on/offboarding (R25a) and device management (R25b). Common management functions which are
neither listed in [13] nor [41], e.g., mechanisms for human interactions (acknowledgements),
management techniques such as device templates or import functions for "asset data providers" [41]
are desirable, but also well covered by existing platforms [35]. Thus, in [13, 41] it was intentionally left
open, whether the IIP-Ecosphere just focuses on the essential capabilities mentioned in [13, 41] or
provides also additional useful capabilities. Please note that quality requirements regarding data
processing time limits, e.g., soft realtime, do not apply to management operations of the device
management.

Besides this freedom, there are requirements that also prescribe the design of the device
management. One important requirement is R7 which requires the use of AAS for the interfaces of all
layers/components in the IIP-Ecosphere platform. On the one side, the device management must take
the information in the platform AAS on available resources into account and use the operations
provided there to manage resources, i.e., this component can require its own operations in the
resources sub-model elements collections described in Section 3.8.1. On the other side, the device
management shall provide relevant own additional operations (such as onboarding, selection of device
templates) to upper layers such as the user interface of the platform. Where adequate, these
operations shall be parameterized with the resource identifier from the resources sub-model (cf.
Section 3.8.1). The functionality of the device management is influenced by given information (through
AAS events92 and polling, R11), but may also directly influence the resource sub-model elements
collection, e.g., adding/removing devices (potentially requiring subsequent operations, e.g.,
shutdown/migration of containers or services).

Moreover, the device management must take the virtual character of the IIP-Ecosphere platform into
account (cf. Section 3.1). Therefore, it is mandatory that the device management is able to operate on
multiple AAS of the structure described in this document rather than on “just” a singleton AAS of the
IIP-Ecosphere platform. This allows taking other IIP-Ecosphere platform instances as well as underlying
mapped-in platform instances into account. However, it is important to understand that access to
these further AAS may be restricted, e.g., management operations are not allowed to be executed.
This may be represented in terms of missing operations or AAS access limitations93.

Primarily, for the device management Java 1.8 compatible libraries shall be used, although this
constraint may be relaxed for this component as it will be utilized in the central IT installation.
Regarding security (R38-R44) or data privacy (R45-R68), this may include the exchange/installation of
encryption keys or certificates during onboarding.

Table 14: Specific requirements for device management (in addition to the general requirements in Table 2, Table 3)

Requirement Summary
R25 Resources must be represented as AAS
R25a Properties/functions of the ECS runtime must be represented as AAS
R25b AAS of available resources must be announced to the platform
R25c Platform must manage the available resources
R25d Platform can offer procedures to facilitate the resource management

92 If possible, the component may rely on change events of the AAS implementation. However, in BaSyx events
are currently in realization and, thus, not yet reflected in the AAS abstraction introduced in Section 3.5. Thus,
the component design shall foresee event-based change notifications as well as (potentially less efficient)
polling/scanning of the respective AAS structures.
93 Currently, security and access restriction mechanisms are not (fully) in place in BaSyx and, thus, not reflected
in the AAS abstraction introduced in Section 3.5.

98
IIP-Ecosphere Platform Handbook

Requirement Summary
R27 Optional deployment to connected IIP-Ecosphere instances, i.e., device

management must be designed transparently and equipped with appropriate
access mechanisms

R28 Optional deployment to cloud resources, e.g., Google Cloud or Gaia-X
R36 Optional configuration of resources
R36a Writing of resource configuration
R36b Reading of resource configuration
R37 Optional remote maintenance of resources
R40 The platform must provide the usual security mechanisms like RBAC and TLS.
R41 The security mechanisms shall be integrated with common directory services.
R43 Safety mechanisms must describe their quality properties and their callable

functions
R45 The data platform must provide fair and lawful processing of personal data
R47-R49 For processing personal data, data subject, legitimate purposes, adequacy, and

storage time must be specified
R50 The platform must identify different categories of personal data
R51 The platform must ensure deletion, blocking, and authorization of personal data
R55 The platform must provide ways to object to the direct marketing of personal data
R57 The platform must offer possibilities to object to the decision support based on the

automated processing of personal data
R136a The platform shall provide an update functionality for the ECS runtimes.

For the device management, further existing components could be helpful, e.g., an IoT device
management approach (to be frontended by AAS), a secure console (R37) or a storage for binary
images (R36a, R36b, R136a). A discussion of potential components in the scope of the requirements
for the resource management is provided by Pidun in [31]. There, for the IoT device management, two
components are discussed, namely DeviceHive94 and ThingsBoard95. The specific capabilities of
ThingsBoard, such as software-over-the-air, firmware-over-the-air, the broad range of supported
protocols, an Angular user interface that could help realizing an optional user interface for the IIP-
Ecosphere platform as well as a higher development activity in the recent time led to the suggestion
of integrating ThingsBoard as one alternative technology into IIP-Ecosphere. For the binary storage,
MinIO96 and OpenStack Object Store Swift97 were compared. Here the support for the de facto
standard S3 made the difference and MinIO was suggested in [31].

The architecture of this component follows the architectural suggestions in [31]. An overview is
depicted in Figure 43. The component offers two AAS interfaces, a southbound interface in
DeviceRegistryAas, and a northbound interface in DeviceManagementAas. The southbound
interface is intended to enable a self-registration of devices and to notify the platform that they are
available (heartbeat). This involves so-called ManagedDevice instances, which bridge between the
ResourceUnit from Section 3.8.1 and specific information required by the underlying management
approach, e.g., a different secondary device id. The northbound interface provides device information
to higher-level components in the IIP-Ecosphere platform.

94 https://github.com/devicehive
95 https://github.com/thingsboard/thingsboard
96 https://github.com/minio/minio
97 https://github.com/openstack/swift

https://github.com/devicehive
https://github.com/thingsboard/thingsboard
https://github.com/minio/minio
https://github.com/openstack/swift

IIP-Ecosphere Platform Handbook
99

Figure 43: Device management (comments cropped)

100
IIP-Ecosphere Platform Handbook

At the core is the DeviceManagement interface, which is composed of operation interfaces covering
different aspects indicated by the requirements, such as resource configuration, remote management
or firmware operations. The separation into different interfaces allows for a unified handling of
implementation, AAS (client) and testing. The DeviceManagementImpl class unifies these interfaces
(by delegation) and implements a default remote management approach via Secure Shell (SSH) based
on temporary sessions created by request on trusted, registered devices. To rely on an existing, mature
implementation, the communication is performed here via SSH streams rather than AAS (due to
performance issues) or the transport layer (a pair of channels might be used for this purpose), although
SSH may impose issues to Windows devices. Further parts of this component are the device registry
abstraction and the storage abstraction. For both parts, the implementation is left open here and can
be realized by alternative components, e.g., ThingsBoard, MinIO etc. As usual in IIP-Ecosphere, these
parts define specific interfaces to the abstracted functionality, a JLS descriptor to create a concrete
instance for the interface as well as supporting classes like AAS client implementations. A specific AAS
client class (EcsAasClient) offers access to an extension of the ECS runtime from Section 3.8.1 to create
a remote SSH endpoint on demand.

As indicated in Figure 43, for a specific setup, the device management offers the following
alternatives:

• ThingsBoard as central management component. ThingsBoard ships with load balancing
mechanisms, an own selection of internal protocol and frequently is setup via Docker
containers. It must be installed separately in addition to server components.

• basicRegistry as a simple, in-memory implementation of the device registry interface. Can be
used instead of ThingsBoard, but does not provide a user interface or persistency mechanisms,
i.e., can be used for test setups.

• MinIO calls itself as the world’s fastest object storage server. MinIo requires adequate setup
on the server side. However, MinIO is licensed since April 2021 under AGPL, i.e., only an
optional integration is permissible and it might not be the primary choice for IIP-Ecosphere
installations.

• S3Mock is a Java/Scala-based object storage server for testing S3 implementations. In contrast
to MinIO, it can be used without license limitations (MIT license), provides access via the
Amazon S3 interface, but accepts any authentication, i.e., can be used for test setups. In
contrast to MinIO, the S3Mock integration contains an IIP-Ecosphere lifecycle descriptor and,
if the setup includes a storage server section, starts also a local storage installation (on the
central IT side).

It shall be noted that due to usage of the well-known S3 protocol/interface for the object storage
(although the individual technical interfaces of S3Mock and MinIO differ), the object storage
integrations can act as storage connectors to storages located in a cloud and accesses can be directed
to a cloud if stated in the component setup.

The device management component supports a simple on/offboarding process, currently without
manual approval of the operations. If explicit on/offboarding is enabled (by default, this is currently
not the case to ease development), a device must be explicitly on-boarded or off-boarded. This may
lead to the exchange/removal of security certificates or encryption keys. On devices, that were not on-
boarded, the platform may not execute operations. Neither exchange of security information nor
denial of operations are currently implemented.

The functionality of the device management has been validated through many fine-grained test cases,
see also [31]. There, the performance of the direct execution of individual device management
operations using the ThingsBoard device registry and the MinIO S3 connector have been measured

IIP-Ecosphere Platform Handbook
101

and take in average 8-170 ms. If the operations are executed via the device management AAS sub-
models, the operations take in average 11-204 ms.

Table 15 reviews the realized requirements for the device management components.

Table 15: Review of realized80 requirements for the device management component.

Requirement Summary
R25 Resources are represented as AAS (cf. Section 3.8.1). Managed devices are

represented by their own AAS entities.
R25a Properties/functions of the ECS runtime must be represented as AAS (cf. Section

3.8.1). An extension for device management is provided.
R25b AAS of available resources must be announced to the platform through the device

management onboarding process.
R25c Platform manages the available resources.
R25d Platform can offer procedures to facilitate the resource management. Currently, no

additional management mechanisms like templates are realized.
R27 Optional deployment to connected IIP-Ecosphere instances. Other platform

instances can hook in although a platform instance classification is currently not
provided.

R28 Optional deployment to cloud resources can be realized through remotely installed
ECS runtime and via the S3 storage connectors. This requirement is currently not
validated.

R36 Resources can be configured through the device management.
R36a Writing of resource configuration is supported by the device management.
R36b Reading of resource configuration is supported by the device management.
R37 Optional remote maintenance of resources is supported by the device

management through its SSH approach.
R40 The platform must provide the usual security mechanisms like RBAC and TLS. TLS

depends on the installation of the AAS, RBAC is currently not supported, only
simple authentication.

R41 The security mechanisms shall be integrated with common directory services,
which is currently not implemented.

R43 Safety mechanisms must describe their quality properties and their callable
functions

R45 The data platform must provide fair and lawful processing of personal data
R47-R49 For processing personal data, data subject, legitimate purposes, adequacy, and

storage time must be specified
R50 The platform must identify different categories of personal data
R51 The platform must ensure deletion, blocking, and authorization of personal data
R55 The platform must provide ways to object to the direct marketing of personal data
R57 The platform must offer possibilities to object to the decision support based on the

automated processing of personal data
R136a The platform shall provide an update functionality for the ECS runtimes. This is

partially supported through the S3 store but currently not validated against the ECS
runtimes.

3.8.3 Monitoring
Service execution shall be monitored, in terms of resources but also in terms of functionality, e.g.,
through application specific probes and alerts. Therefore, the IIP-Ecosphere platform foresees a set of
generic built-in monitoring probes (cf. Section 3.7) as well as application-specific probe extensions that
communicate their information via topic streams to one or multiple monitoring information
aggregators. In turn, aggregators provide their state to upper level layers. Also (application-specific)
alarming via specific streams shall be supported. In addition to the service monitoring, the IIP-

102
IIP-Ecosphere Platform Handbook

Ecosphere platform shall also monitor resources via the installed ECS runtimes and also the execution
of the ECS runtime.

While the probing of the individual services or ECS runtimes/resources happens on the devices (and
thus belongs to Section 3.7 or Section 3.8.1, respectively), the main task of this component is to
aggregate the information on IT infrastructure level (see also [41]). The aggregation of the received
values shall follow existing guidelines, approaches, relevant standards or norms in Industry 4.0. As the
IIP-Ecosphere platform shall operate across a plethora of resources (and connected or underlying
platforms and their resources, if available), the monitoring component shall foresee (optional)
hierarchical aggregation to distribute the input load and to increase the efficiency.

Table 16 summarizes the basic requirements for the monitoring component from [13]. These focus on
devices/resources, services and alarming/alerts, in generic or application-specific fashion (e.g.,
through specific monitoring services hooked into the data processing chain). Akin for the device
management, one important general requirement is R7 which requests the use of AAS for the
interfaces of all layers/components in the IIP-Ecosphere platform. On the one side, the monitoring
must take the information in the platform AAS on available resources into account and use the
information provided by services and resources through their local monitoring. This component may
require further properties than those, e.g., described in Section 3.8.1. On the other side, the device
management shall provide relevant (aggregated) information and own operations to upper layers such
as the user interface of the platform. The functionality of the monitoring component shall rely on
underlying information (through AAS events92 and polling, R11) in the services/resource sub-model
elements collections. However, due to potential performance issues of the AAS approach, for urgent
alarms/alerts also a second path via the Transport component is more adequate.

As described for the device management, the monitoring component must take the virtual character
of the IIP-Ecosphere platform into account (cf. Section 3.1). Therefore, it is mandatory that the
monitoring is able to operate on multiple AAS of the structure described in this document rather than
on “just” the singleton AAS of the IIP-Ecosphere platform. This allows taking other IIP-Ecosphere
platform instances as well as underlying mapped-in platform instances into account. However, it is
important to understand that access to these further AAS may be restricted, e.g., access to information
is limited. This may be represented in terms of missing properties or AAS access limitations93.

Table 16: Specific requirements for monitoring (in addition to the general requirements in Table 2, Table 3)

Requirement Summary
R4d Execution of services must be supervised/monitored.
R4e Service monitoring shall be parameterizable.
R4f Service monitoring shall be realized by application-specific services
R25e The AAS of the resource must describe static properties of the resource
R25f The AAS of the resource must describe dynamic properties of the resource
R46 The collection of personal data must be for specified, clear and legitimate

purposes
R53 The platform must provide a mechanism for notifications regarding rectification,

deletion, blocking, and leakage.
R63 The platform shall provide a mechanism to capture user privacy and security

requirements
R118a The platform shall provide warning and alerting services to the AI toolkit.
R122 Based on the configuration model, the platform shall be able to decide on the

optimal use of AI methods, i.e., reflection of monitoring information into the
configuration model is needed.

IIP-Ecosphere Platform Handbook
103

Primarily, for the monitoring component Java 1.8 compatible libraries shall be used, this constraint can
be relaxed for the central monitoring components. As first (alternative) monitoring component we
decided for an integration of the Prometheus service and resource monitoring approach (open source,
Apache License). Prometheus is based on gathering data from HTTP/REST servers exposing monitoring
endpoints, allows for configuring evaluation rules on the gathered data, stores the data in a time series
data base and exposes the aggregated information again as HTTP/REST service endpoints (including an
alert manager). However, direct HTTP access across all resources in a production system may not be
permitted, i.e., some intermediary representation might be required.

One approach could rely on directly reading out the platform AAS, the devices and services AAS or
submodels. Initial experiments using BaSyx as backend for a web-based UI (cf. Section 3.14) are
promising. Here, standardized submodels (as started by the IDTA for a resources submodel) could lead
in the future to existing, reusable components for AAS based scraping of monitoring information, and,
thus, could ease the effort of integrating such monitoring systems.

An alternative approach, as illustrated in Figure 44, is to provide the monitoring information through
the transport layer as envisioned in [4]. For Prometheus, this is then similar to approaches allowing
Prometheus to monitor resources over network borders, where a firewall or a gateway provides a
proxying service98, which collects all relevant information in the subnet on behalf of Prometheus and
offers the collected information on individual endpoints to the scraping process of Prometheus.
Although this requires an additional server process in the Prometheus case, it also allows for the
flexible integration of other monitoring systems, as the data is provided independently and just must
be translated into a format that can be understood by the respective monitoring system, e.g., a
transport-to-MQTT translation that feeds information into the monitoring component.

In our case, the integration of Prometheus into the IIP-Ecosphere platform receives the monitoring
data of individual resources via transport communication, exposes this information in an own (local)
web server and adjusts the Prometheus configuration so that new devices are considered for scraping
via the (local) web server. The implementation of such a metrics exporter is prepared in the generic
IIP-Ecosphere monitoring component, while the Prometheus-specific integration is done in the
alternative Prometheus integration component. The Prometheus integration component also contains
the Prometheus binaries for Windows and Linux as well as an own lifecycle descriptor that starts and
shuts down Prometheus. Within this lifecycle, a bridging metrics exporter as well as an alert monitor
are started. We use the Prometheus alertmonitor99 (Apache License) as the Prometheus client library
does not provide support for alerts. The alertmonitor scrapes the alert manager HTTP API of
Prometheus in regular fashion and turns alerts into alert instances of the transport layer (alert stream,
see Table 25 in Section 8.1). The setup of Prometheus is defined in the configuration model and the
setup information is generated during the platform instantiation process. Part of this setup is also the
information, whether we rely on an installed Prometheus server or whether we have to start the
included binaries.

The monitoring component defines an own AAS submodel, which currently consists of a list of recent
alerts. Individual, aggregated monitoring values as well as changes of monitoring rules will be subject
of the next releases.

Ultimately, the Prometheus monitoring component is configured and integrated through the
configuration model and the platform instantiation. However, realizing the bridging approach requires
careful handling of the embedded Tomcat webserver, as otherwise in particular our default test broker
Apache Qpid may throw NullPointerExceptions when the Tomcat instance creates server

98 https://github.com/pambrose/prometheus-proxy
99 https://github.com/matjaz99/alertmonitor

https://github.com/pambrose/prometheus-proxy
https://github.com/matjaz99/alertmonitor

104
IIP-Ecosphere Platform Handbook

contexts. This would significantly limit the flexibility of choosing transport protocols in the platform.
The current approach works with a single root context, into which a default metrics servlet and one
servlet per device in an IIP-Ecosphere platform installation are added. The default metrics servlet is
added statically when the server instance is created, the device servlets upon status messages of the
platform. Further evaluation also of the performance will be subject to further work / releases.

Some components conflict regarding their dependency versions, e.g., in the past BaSyx and Spring
regarding the required versions of the Servlet container Tomcat, partially running both in the same
JVM was not possible. For this purpose, the platform instantiation creates an own monitoring
component that can be executed besides the platform services in an own process. Moreover, the
Prometheus monitoring component defines three lifecycle profiles, the complete Prometheus
integration, only Prometheus or only the integration. In one of the next releases, we may abandon the
creation of an own component and rely only on the lifecycle profiles.

The monitoring of system-level meters and application level meters (data items received/sent) has
been validated through the Prometheus UI. Added resources (ECS-Runtime/Service Manager) when
they occur are taken up, system- and application-level meters are categorized according to device id
(and service id for application-level) and displayed individually. Aggregated values or rates can be
calculated from this information on Prometheus level. Currently, the underlying approach based on
micrometer automatically adds several technical system-level meters. Moreover, Spring also adds
additional meters. Most of these meters are not relevant on platform level and could be filtered out.
Also per monitoring diagram, currently all meter information is transmitted, while updates could focus
on changing values and omit already known static values like descriptions or monitoring units. Both
improvements are out of scope for this release, but planned for the next release of the IIP-Ecosphere
platform.

Table 20 summarizes the state of realizing the requirements for the monitoring approach.

Figure 44: Monitoring (comments cropped)

IIP-Ecosphere Platform Handbook
105

Table 17: Review of realized80 requirements for the monitoring component.

Requirement Summary
R4d Execution of services is be supervised/monitored.
R4e Service monitoring is parameterizable via monitoring rules and application-specific

monitoring services, which can offer own parameters.
R4f Service monitoring shall be realized by application-specific services. Generic

monitoring probes, e.g., for throughput are integrated automatically by the
platform instantiation. Further generic resource monitoring probes are provided
by used libraries, e.g., Spring or the Prometheus Java client. The interface of probe
services is defined and implementations can be based on the alert format defined
by the transport component.

R25e The monitoring component provides an own AAS, which builds up a dynamic
structure. Currently, the focus of the AAS is on monitoring alerts rather than
aggregated monitoring values.

R25f The monitoring component provides an own AAS, which builds up a dynamic
structure. Currently, the focus of the AAS is on monitoring alerts rather than
aggregated monitoring values.

R46 The monitoring approach does not collect personal data.
R53 The monitoring approach does not collect personal data.
R63 The platform shall provide a mechanism to capture user privacy and security

requirements.
R118a The interface of probe services is defined and implementations can be based on

the alert format defined by the transport component.
R122 Currently, the monitoring information is not reflected into the configuration model.

3.9 Storage, Security and Data Protection Layer
The Storage, Security and Data Protection Layer is responsible for managing security aspects of the IIP-
Ecosphere platform based on the platform configuration, for offering security-enhancing services (such
as anonymization or pseudonymization) as indicated in Figure 45, but also for secure integration of
(encrypted) data lakes or clouds. As discussed in Section 3.1, the purpose of this layer is not to realize
typical cross-cutting security mechanisms, which will be subject to the security discussion in Section 7.

Table 22. summarizes the specific requirements for the Storage, Security and Data Protection layer.
We do not focus on the configuration aspects (R40a, R40b, R41a, R42, R44, R64a, R65a) here, as we do
so later in the discussion of the Configuration Layer in Section 3.11.

Table 18: Specific requirements for the Storage, Security and Data Protection layer
(in addition to the general requirements in Table 2, Table 3)

Requirement Summary
R38 Use of services only for authorized persons.
R39 Personal data is only changed by authorized persons.
R40 Common security mechanisms, such as RBAC or TLS.
R41 Integration with common directory services, e.g., LDAP
R41b If no directory service is available, a mechanism for managing user accounts must

be provided.
R43 Safety mechanisms must describe their (quality) properties and callable functions

as AAS.
R43a The AAS shall describe the respective impact on the performance.
R43b Selected security mechanisms shall be deployable.
R45 The platform must provide fair and lawful processing of personal data.
R46 The collection of personal data must be for specified, clear and legitimate

purposes.

106
IIP-Ecosphere Platform Handbook

Requirement Summary
R47 The platform shall avoid the processing of personal data as much as possible.
R47a Applications running on the platform shall avoid processing personal data as much

as possible.
R47b Models used on the platform shall be protected against privacy attacks.
R48 Store personal data in a form that permits identification of data subjects for no

longer than is necessary for the purposes for which the data is processed.
R49 Process personal data adequate and relevant to the purpose and limited to what is

necessary for the purposes of the processing.
R49a Applications shall process personal data adequate and relevant to the purpose and

limited to what is necessary for the purposes of the processing.
R50 Identify different categories of personal data processing.
R51 Ensure the authorization, deletion or blocking of personal data.
R52 Store personal data in a structured, common and machine-readable format.
R53 Notification mechanism for rectification, deletion, blocking, leakage of personal

data.
R54 Ensure possibilities to object to the processing of personal data.
R55 Provide ways to object to the direct marketing of personal data.
R56 Provide options to object to the transfer of personal data to third parties.
R57 Offer possibilities to object to decision support based on the automated

processing of personal data.
R58 Support the detection of personal data breaches and their reporting to data

subjects.
R59 Ensure authorization with regard to access to personal data.
R60 Provide privacy principles when consent is required for the processing of personal

data.
R61 Enable users to control their personal data requirements.
R62 Facilitate the assessment of data protection impact assessment to identify threats

and risks in the processing of personal data.
R63 Provide a mechanism to capture user privacy and security requirements.
R64 The privacy mechanisms shall anonymize the information in specified data fields.
R65 The privacy mechanisms shall detect and anonymize personal data contained in

free text.
R66 Pseudonymization shall keep pseudonyms in the system only for the time actually

needed.
R66a After the time of need has expired, a new pseudonym shall be assigned to the

same person.
R66b The purpose and scope shall be aligned with the operating agreement when used

internally.
R66c Pseudonymization shall be applied in case of external use only after the consent of

the person concerned.
R67 The platform shall capture and classify generated cookies or similar identifiers

stored on end devices.
R68 The platform shall provide the possibility of automatic deletion of such (R61)

identifiers, as well as deletion at the request of the user.

3.9.1 KODEX platform service
The privacy enhancing service in this layer integrates the KODEX privacy and security engineering
toolkit100 by KIPROTECT into the IIP-Ecosphere platform. Currently, we focus on two alternative

100 https://heykodex.com/, https://github.com/kiprotect/kodex

https://heykodex.com/
https://github.com/kiprotect/kodex

IIP-Ecosphere Platform Handbook
107

integration forms, one via command line streams, i.e., as shown in Figure 45
(AbstractStringProcessService from the Java service environment) as well as a REST-based
alternative. It is important to mention that KODEX is a generic tool that requires some form of setup
to operate on the incoming data in the intended manner. Thus, KODEX acts here as a blueprint for
rather generic data services in the IIP-Ecosphere platform. It is interesting to mention that KODEX is
realized in GO, i.e., not in Java, and it was the first external data processing service integrated into the
IIP-Ecosphere platform. To cope with the genericity of KODEX, some design decisions were made for
KODEX that apply analogously to other external services:

• The KodexService is parameterized over the incoming and outgoing data types. To transfer
data instances correctly to KODEX, respective type translators (the more generic form of a
Serializer) are required. These type translators shall be provided by the utilizing code, e.g., a
Spring Cloud Service node generated from the configuration model, which collects the
knowledge about incoming and outgoing types of all service chains of all applications on a
certain IIP-Ecosphere instance.

• The customization of KODEX happens in terms of certain files that specify the data model. Akin
to the type translators, the contents of these files are determined upon integration into a
service processing chain and shall be generated from the configuration model. These files shall
be packaged into a ZIP archive (named according to the using node in the service chain) and
stored in the service implementation artifact as specified in the respective process part of the
service deployment descriptor, which is also contained in the service implementation artifact.
When starting the service node, the deployment descriptor is consulted, the artifacts are
extracted and the customization files are placed into the home directory of the process
implementing the service, here KODEX.

• In the (extracted) home directory of the process, also the service implementation must be
located, i.e., in the KODEX case the operating-system specific binaries. Such implementation
files shall be packaged into a “binary” Maven ZIP artifact and deployed along with the service
integration code, here KodexService. When integrating the generic service code into a
service chain, the Maven identification of the service implementation, here KODEX, is known,
and so is the deployed implementation (here binaries for different operating systems). During
automated instantiation/integration, the “binary” ZIP is packaged into the service
implementation artifact and named respectively so that it can be extracted upon service start
along with the customization files as described above.

• Upon code generation of the Spring nodes, further customizations may happen, e.g., service-
specific customization files could be created.

Further integrations, e.g., using the REST API of KODEX as well as a performance comparison among
different forms of the integration are currently being conducted. Initial results confirm that REST
outperforms command line streams on Windows. For example, processing a batch of 1000 tuples,
windows with command line streams takes 15 ms per tuple in average, REST on Windows 0.22 ms,
command line streams on Linux 1.4 ms and REST 2 ms on Linux.

Regarding licenses, it is important to mention that at the point in time of writing this document, KODEX
is licensed under AGPL. However, viral AGPL rules do apply to binary code, i.e., using the KODEX
binaries with respective credits does not taint the license limitations of IIP-Ecosphere. Moreover,
KODEX is only integrated, if it is explicitly used as a service in an application and only becomes active
when the respective service chain is started.

3.9.2 Data lakes / Data bases
Work on data lakes has just been started, i.e., the KODEX integration is currently the only component
that is contributed by the Storage, Security and Data Protection Layer to this release. Precursor work

108
IIP-Ecosphere Platform Handbook

in BMBF HAISEM-Lab on the performance of various time series data bases (e.g., Influx, Timescale,
etc.) as well as discussions with partners on their experiences gives an indication for potential
candidates to be integrated.

Figure 45: Overview of the data and security (comments cropped)

Table 19 summarizes the realized and open requirements for the Storage, Security and Data Protection
Layer. As indicated in that table, many of the security and privacy requirements are still open while
some are fulfilled, e.g., through the integration of KIPROECT KODEX.

Table 19: Review of realized80 requirements for the Storage, Security and Data Protection Layer.

Requirement Summary
R38 So far, the platform does not provide authorization mechanisms.
R39 So far, the platform does not provide authorization mechanisms.
R40 Some components like the transport connectors exhibit settings for enabling TLS.

This is currently not managed through the Storage, Security and Data Protection
Layer, the configuration or the device management. Currently no mechanism for
RBAC exists.

R41 Currently, there is no integration with common directory services, e.g., LDAP.
R41b Currently, there is no mechanism for managing user accounts.
R43 Currently, there is no AAS for this layer.
R43a Currently, there is no AAS for this layer.
R43b Selected security mechanisms shall be deployable, e.g., the KODEX service.
R45 Currently there are no mechanisms for provide fair and lawful processing of

personal data.
R46 Currently, there are no mechanisms to handle that the collection of personal data is

only for specified, clear and legitimate purposes.
R47 The platform shall avoid the processing of personal data as much as possible.
R47a The design of applications is out of the scope of the platform.
R47b Models are currently not protected against privacy attacks.
R48 Currently, data is not stored.
R49 Currently, there are no mechanisms to ensure that personal data is processed

adequate and relevant to the purpose and limited to what is necessary for the
purposes of the processing.

R49a The design of applications is out of the scope of the platform.

IIP-Ecosphere Platform Handbook
109

Requirement Summary
R50 Currently, no categories of personal data processing are identified.
R51 Currently, no authorization, deletion or blocking of personal data is supported.
R52 Currently, no data is stored.
R53 Currently, there is no notification mechanism regarding rectification, deletion,

blocking, leakage.
R54 Currently, there are no possibilities to object to the processing of personal data.
R55 Currently, there are no ways to object to the direct marketing of personal data.
R56 Currently, there are no options for objecting to the transfer of personal data to

third parties.
R57 Currently, there are no possibilities to object to the decision support based on the

automated processing of personal data.
R58 Currently, there is no detection of personal data breaches and their communication

with data subjects.
R59 Currently, there is no authorization mechanism.
R60 Currently, there are no supported privacy principles when consent is required for

the processing of personal data.
R61 Currently, there are no means to enable users to control their personal data

requirements.
R62 Currently there is no assessment of data protection impact assessment to identify

threats and risks in the processing of personal data.
R63 The KODEX service is one mechanism to capture user privacy and security

requirements.
R64 The KODEX service anonymizes information in specified data fields.
R65 The KODEX service can anonymize personal data contained in free text.
R66 Pseudonymization shall keep pseudonyms in the system only for the time actually

needed.
R66a After the time has expired, a new pseudonym shall be assigned to the same person.
R66b The purpose and scope shall be aligned with the operating agreement when used

internally.
R66c Pseudonymization shall be applied in case of external use only after the consent of

the person concerned.
R67 The platform currently does not store cookies or similar identifiers stored on end

devices. This may apply to an extension of the device management.
R68 Currently, the platform does not provide the possibility of automatic deletion of

such (R61) identifiers, as well as deletion at the request of the user.

3.10 Reusable Intelligent Services Layer
On top of the layers discussed before, the Reusable Intelligent Services Layer provides AI mechanisms
in reusable and configurable manner and integrates received/monitored data with additional
information such as product order information or floor plans to provide further valuable input to the
AI. In this section, we briefly discuss the specific requirements (Section 3.10.1), the integration of
RapidMiner RTSA as AI platform service (Section 0), further service candidates ahead (Section 3.10.4)
as well as the planning for an AI toolkit (Section 3.10.6).

3.10.1 Specific Requirements
This section lists the specific requirements for the Reusable Intelligent Services Layer. It is important
to remember from [13] that the actual realization of this layer / the AI toolkit is not part of the
responsibilities of the core platform team rather than of all IIP-Ecosphere partners, e.g., the partners
in the AI-Accelerator. However, the work of the Think Tank Platforms provides the technical framing
for the AI toolkit, which shall follow the requirements in Table 22.

110
IIP-Ecosphere Platform Handbook

Table 20: Specific requirements for the Reusable Intelligent Services layer
(in addition to the general requirements in Table 2, Table 3)

Requirement Summary
R110 Definition of interfaces for relevant AI components in industrial production.
R110a Interfaces must be realized as AAS.
R110b AAS interfaces must describe functional and quality aspects.
R111 AI toolbox must be extensible
R112 Elements of toolbox shall be distributable.
R112a Parameters of the elements shall be defined in the configuration model.
R112b Properties of distribution shall be defined in the configuration model.
R112c Distribution shall be subject to restrictions for individual elements.
R113 AI toolkit shall support AI components in common programming

languages/environments.
R113a Support for Python, Pandas/Numpy, Knime, Scikit-learn, Tensorflow and

RapidMiner.
R113b Support for a middleware for agent management based on the Industry 4.0

language.
R114 Provide relevant AI methods common in/suitable for production.
R114a AI methods shall be generic, parameterizable and adaptable.
R114b AI toolkit shall support Transfer Learning.
R114c AI toolkit shall support Reinforcement Learning.
R114d AI toolkit shall support simple statistical procedures for decision making.
R114e AI toolkit shall support neural networks.
R114f AI toolkit shall support time series classification.
R114g AI toolkit shall support anomaly detection.
R114h AI toolkit shall provide methods for state detection.
R115 AI toolkit shall support AI models in standardized formats.
R116 AI toolkit shall support pre- and post-processing of data.
R116a Pre- and post-processing procedures shall be generic, parameterizable and

customizable.
R116b AI toolbox can provide feature design / digital signal processing services (bandpass

filters, FTF transforms, running RMS)
R117 AI toolbox and the AI methods included shall provide transparency and traceability

about their decision-making
R118 The platform must provide central services to the AI construction kit.
R118a The platform shall provide warning and alerting services to the AI toolkit.
R118b The platform must provide storage services to the AI toolkit.
R118c The platform must provide security services to the AI toolkit.
R118d The platform must provide privacy services to the AI toolkit. [
R118e The platform must provide data integration services to the AI toolkit.
R119 Training of AI methods shall happen automatically and in parallel/background. The

trained models shall then be offered to the components of the platform.
R119a The release of the trained model shall be done manually by a user with

appropriate rights.
R119b The release of the trained model shall be determined via settings in the

configuration model.
R119c The release of the trained model can be automatic (if specified in the configuration

model).
R119d The changes triggered by a release of a trained model shall be traceable.
R119e Changes initiated by a release shall be reversible.

IIP-Ecosphere Platform Handbook
111

Figure 46: Reusable Intelligent Services and data processing function library (cropped)

3.10.2 Data Processing Function Library
Application of AI methods encompasses more than just the AI methods. Usually, also functionalities
for data pre-processing etc. are required. As a basis to meet the requirements regarding pre-processing
and data transformation functions (in [41], e.g., frequency analysis), we equipped the platform with a
library of functions for data processing. In this version of the platform, first functions were integrated,
namely

• Image transcoding from/to base64 strings.
• Image processing such as grayscaling, rescaling or thresholding.
• Barcode/QR-code detection based on the Java library zxing101 and, as optional fallback, the

Python library pyzbar102. For the Python fallback, respective packages must be installed.

3.10.3 RapidMiner RTSA service
RapidMiner is a pioneering company in the fields of data analysis and AI. Their work on the RapidMiner
Platform (in Java) and the RapidMiner Studio shows that AI composable from building blocks is not
only a vision. One fundamental component in the RapidMiner ecosystem is the Real Time Scoring
Agent (RTSA), a REST-based execution environment for deployments created by RapidMiner Studio.

Following the ideas in [41], a separation of data science exploration and design processes from the
actual execution/deployment is desirable. Thus, RapidMiner is an excellent example for such an
approach integrated into the IIP-Ecosphere platform. While the DataAnalyst can first create a data
science process for given data in his/her own environment, the created process (as “deployment”) can
later be deployed by the IIP-Ecosphere platform and executed under the control of the Service
Manager on top of RTSA. For the integration, mainly the data input/output formats must match, i.e.,
the data provided by the IIP-Ecosphere platform (output of a connector/service) becomes the input

101 https://zxing.org/w/decode.jspx
102 https://pypi.org/project/pyzbar/

https://zxing.org/w/decode.jspx
https://pypi.org/project/pyzbar/

112
IIP-Ecosphere Platform Handbook

for the RTSA deployment and the output of the RTSA deployment becomes an input for upstream IIP-
Ecosphere services.

Along these lines, the platform-supplied RtsaRestService (see Figure) integrates the RTSA and
links the platform data streams to the input/output of the RTSA. The realization is similar to the REST-
based integration of KODEX discussed in Section 3.9.1. In the configuration, a deployment file for the
RTSA is specified, which is packaged by the application/platform instantiation along with the RTSA
binary into the respective service artifact. Here it must be considered that RTSA is a commercial
service, i.e., it requires a license file and cannot be distributed openly. For testing the service
integration and the platform instantiation the test part of the component ships with an RTSA mockup
(FakeRtsa), which acts as a REST server pretending to be an RTSA instance with a deployment. This
fake RTSA can be configured in limited form to transform the input data, e.g., by changing fields or
adding fields having a random number value. While this is not needed for the plain RTSA testing, it can
help testing data flows for an application if a real RTSA is not available. For the platform instantiation,
either the real or the mocking RTSA and its deployment are given in a specific folder according to the
platform naming for binary files from which the instantiation process can take up the binaries.

3.10.4 Flower-based Federated Learning
One AI method that is of particular interest for the industrial production and for the integration within
the IIP-Ecosphere platform is federated learning. Federated learning services act as services as they
consume data and produce predictions, but they also share information about their AI model with
other federated learning services (usually of the same application) so that the other services can learn
new knowledge faster, e.g., acceptable anomalies. So far, also due to the client-server approach,
federated learning is often viewed as a complex approach, which might be used more frequently in
the industrial practice if an easy-to-use form of federated learning would be available. We aim at
demonstrating one approach to easy-to-use federated learning in terms of the upcoming Hannover
Messe 2023 IIP-Ecosphere demonstrator. Currently, the integration is still in development, but
technically it is based on the service/server communication introduced in Section 3.7.4.

Figure illustrates the planned integration for the Flower103 framework written in Python. Services
(Federated learning client) and the server (usually assigned to one or multiple applications) are
supposed to be specified in the configuration model. Both, client services and server service are
realized in Python based on Flower and executed through the Python Service Environment and the
respective Java integration counterpart (PythonAsyncProcessService). As explained in Section
3.7.4, in contrast to the client services, the server does not consume/produce regular service data
streams. To be manageable within the platform, the server needs a Java counterpart which is also a
Server, which manages the (hidden) service application lifecycle and relies in most of its functionality
directly on PythonAsyncProcessService. All related parts, client service, server service and Java
counterpart are supposed to be generated from the configuration model. While we are convinced that
the server can be generated completely, we will probably generate a template for the client service
(including the basic technology code for, e.g., tensorflow and numpy).

3.10.5 Service candidates ahead
Further service candidates are envisioned for integration, e.g., the demonstration of Python-based AI
from the Hannover Messe 2022 demonstrator or individual service components from the IIP-
Ecosphere Sennheiser demonstrator.

103 https://flower.dev/

https://flower.dev/

IIP-Ecosphere Platform Handbook
113

3.10.6 IIP-Ecosphere AI Software Service Concept
Currently, the partners are working on an AI service concept as foundation for the AI service toolkit. It
will probably cover AI software services on different levels of granularity, ranging from atomic binding
blocks over application sub-meshes up to entire application use cases. Some of these ranges can
already be covered by the RTSA integration, individual points within this range of AI services will be
filled as examples by the expected services ahead. Thus, we expect experience from the initial practical
integration of AI services that can help to complement and complete the concept of the AI toolkit.

3.10.7 Requirements Discussion
We review now the realized requirements in Table 23.

Table 21: Review of realized80 requirements for the Storage, Security and Data Protection Layer.

Requirement Summary
R110 Definition of interfaces for relevant AI components in industrial production depends

on the AI service concept (Section 3.10.6).
R110a Service interfaces are managed and represented by the platform as AAS.
R110b Service interfaces must express quality aspects as AAS.
R111 AI toolbox must be extensible, which depends on the AI service concept (Section

3.10.6).
R112 Elements will be realized as platform services and therefore may be distributable

(depending on AI requirements).
R112a Services in the platform can have parameters that are defined in the configuration

model.
R112b Properties of distribution shall be defined in the configuration model. Currently,

the configuration contains only the information whether a service is distributable.
R112c Currently no distribution applies.
R113 Supported through the service environments for Java and Python and the process-

based service integration.
R113a Support for Python and RapidMiner is provided. Pandas/Numpy, Knime, Scikit-

learn, Tensorflow come through dependencies that can be specified in the
configuration model. The automated creation of containers with these
dependencies is ongoing.

R113b This depends on the AI service concept (Section 3.10.6).
R114 This depends on the AI service concept (Section 3.10.6).
R114a This depends on the AI service concept (Section 3.10.6).
R114b Currently a federated learning approach is in integration. Further approaches

depend on the AI service concept (Section 3.10.6).
R114c This depends on the AI service concept (Section 3.10.6).
R114d This depends on the AI service concept (Section 3.10.6).
R114e This depends on the AI service concept (Section 3.10.6).
R114f This depends on the AI service concept (Section 3.10.6).
R114g Currently a federated learning approach is in integration. Further approaches

depend on the AI service concept (Section 3.10.6).
R114h This depends on the AI service concept (Section 3.10.6).
R115 This depends on the AI service concept (Section 3.10.6).
R116 This depends on the AI service concept (Section 3.10.6).
R116a This depends on the AI service concept (Section 3.10.6).
R116b This depends on the AI service concept (Section 3.10.6).
R117 This depends on the AI service concept (Section 3.10.6).
R118 Already available central services are provided.
R118a The transport layer allows for warnings and alerts.

114
IIP-Ecosphere Platform Handbook

Requirement Summary
R118b So far, no storage services are available (see Section 3.9.2).
R118c Some Platform security services are provided through the identity store.
R118d Existing privacy services like KODEX can be applied in the same service mesh (see

Section 3.9).
R118e The data integration services are not yet integrated.
R119 This depends on the AI service concept (Section 3.10.6).
R119a This depends on the AI service concept (Section 3.10.6).
R119b This depends on the AI service concept (Section 3.10.6).
R119c This depends on the AI service concept (Section 3.10.6).
R119d This depends on the AI service concept (Section 3.10.6).
R119e This depends on the AI service concept (Section 3.10.6).

3.11 Configuration Layer
It is important to recall that all relevant static and runtime information shall be reflected in terms of
IVML structures, relations and constraints, while the IVML validation reasoner validates the platform
configuration before and at runtime by identifying problems and deviations from validation rules and
expected information. The Configuration Layer provides functionality to define applications in terms
of the platform IVML configuration on top of the (reusable) services, to dynamically and adaptively
optimize the deployment of services and containers and to adapt the use of services at runtime.

Table 22 summarizes all requirements from [13] regarding the configuration. The use of the
configuration for resource optimization or adaptation is not listed in Table 22. In this release, we focus
on the Configuration component (responsible for the configuration modelling and the instantiation) of
the Configuration layer. Optimized container deployment and adaptive operations are deferred to
future releases.

Table 22: Specific requirements for the configuration (in addition to the general requirements in Table 2, Table 3)

Requirement Summary
R8 SPL approaches shall be used for variant management.
R8a The platform must contain an integrated configuration model for applications,

services and platform properties.
R8b Automated validation of the configuration model
R8c Automated derivation of platform instances
R12a The platform can automatically derive the documentation of data processing

methods from the configuration model.
R17a Connectors shall be described in the configuration model.
R19f The platform shall provide mechanisms for format adaptation or format

conversion described in the configuration model.
R19g The platform shall provide mechanisms for customization or manipulation of

metadata as specified in the configuration model.
R20a Data paths/relations must be defined in the configuration model.
R20b Data paths/relations can have properties/parameters.
R25c The platform must manage the available resources.
R31c The required components to be installed into a container must be specified in the

configuration model.
R31b Containers can contain optional components.
R34 The creation of containers by the platform shall be automated, based on the

settings in the configuration model.

IIP-Ecosphere Platform Handbook
115

Requirement Summary
R34a A model validation can be performed before creation or execution to ensure

executability.
R34b The platform can support externally provided containers (e.g., for digital twins).
R36 The platform shall enable configuration settings for resources (read/write).
R40a RBAC roles can be specified in the configuration model.
R40b TLS certificates can be specified in the configuration model.
R41a Directory services must be configured in the configuration model.
R41b Absence of directory services shall be handled through the configuration.
R42 Further safety mechanisms must be configured uniformly via the configuration

model.
R43 Performance targets shall be considered in the configuration model.
R44 The configuration model shall offer IDS-based connectors as optionally

configurable.
R64a The specification of the data fields for anonymization shall be done via the

configuration model.
R65a The specification of the data fields for anonymization of personal data shall be

done via the configuration model.
R73e The data schema for storage services of structured data shall be defined in the

configuration model.
R77a If the platform supports cloud services, the configuration model must offer the use

of cloud-based storage services as an option.
R80 Data (including meta-data) shall be described in the configuration model, including

data protection classes.
R86 The functionality of the data integration shall be defined by the configuration

model.
R89 The platform must allow the data integration write access to data. The data stores

shall be defined in the configuration model.
R93 The platform must be systematically configurable in the form of a configuration

model.
R94 The platform must support the automatic validation of the configuration model for

inconsistencies and errors.
R94a

Validating a configuration model with 50 resources and 5 applications shall be
completed in less than 1 second.

R95 The platform must support automatic platform instantiation for a configuration.
R95a The instantiation of a configuration model with 50 resources and 5 applications

shall be completed in less than 15 minutes.
R96 The configuration model must represent optional and alternative platform

components/services.
R96a The configuration model must describe properties of the platform

components/services.
R97 The configuration model must include the applications running on the platform.
R97a An application configuration must contain the configured services for the

application.
R97b An application configuration must contain the configured connectors for the

application.
R97c An application configuration must contain the data paths of the application.
R97d An application configuration shall contain alternative services.
R97e The configuration model can allow for application templates.
R98 The configuration model shall support customizations at different times in the

software lifecycle.

116
IIP-Ecosphere Platform Handbook

Requirement Summary
R99 Information from the configuration model can be made available to other

components via internal connectors.
R100 The configuration model can be a decentralized model.
R101 Information provided in the AAS of components/services shall be mapped

automatically into the configuration model.
R101a The transfer of information for a configuration model with 50 resources and 5

applications shall be completed in less than 1 second.
R112a Parameters of the AI services shall be described in the configuration model.
R112b Properties of the distribution of AI services shall be described in the configuration

model.
R112c Distribution shall be subject to restrictions for individual AI services.
R113a Technical dependencies to AI frameworks shall be specified in the configuration

model.
R119b The release of the trained model shall be determined via settings in the

configuration model.
R119c The release of the trained model can be automatic (if specified in the configuration

model).
R119e Changes initiated by a release of an AI model training shall be reversible, e.g., due

to configurable criteria.
R120 The configuration model must describe alternative AI components for an AI

method.
R122a The adaptation must be based on the configuration model.
R122c The adaptation must store its decisions in the configuration model.
R123 Enactment of the adaptation must happen through the configuration.
R123a The platform can offer mechanisms for updates.
R131 The platform must support the creation and deployment of applications.
R131a The configuration model must support the specification of applications, their

required services, connectors, involved data paths and the needed resources.
R131b The configuration model must allow for the versioning of applications and services.
R131c The configuration model can enable the parameterization of applications.
R131d The configuration model shall support application templates for simplified

configuration of requirements.
R131e The configuration model must describe dependent applications or services.
R131f The configuration of applications and data paths can be done in a graphical way.
R131g The platform must support the deployment of applications.
R132a The configuration model must support application-specific services.
R133a The platform must know the status of the services.
R133b The platform must know the status of the running applications.
R134 The platform must support the removal of applications/services.
R134a The platform must support the removal of deployed applications/services.
R134b The platform can support the removal of applications from the configuration

model.
R135 The platform shall support the update of applications.
R138 The platform can provide an app store.
R139 The platform can provide a user interface.
R141 The platform can enable the visualization of data.

Figure 47 illustrates the design of the configuration component. While the diagram (and the
implementation) may appear rather trivial, most of the complexity is in the configuration model, the
instantiation process and the underlying framework EASy-Producer.

IIP-Ecosphere Platform Handbook
117

As already discussed for Figure 2, the configuration model follows the layered architecture of the
platform, i.e., each platform layer is represented by a configuration module. Figure 47 just indicates
the topmost module, named IIPEcosphere, representing the configuration meta-model, i.e., the
configuration options, their structures as well as constraints permitting certain configurations or
propagating values among configuration options. We will discuss the model in more details in Section
6. For each platform to be installed, a dedicated platform configuration is created which specifies the
AAS settings, the platform data types, the platform services etc. Moreover, for each application a
separated (imported) configuration module shall be created, which contains the application-specific
data types, the application-specific services as well as the service meshes (directed data flow graphs
relating connectors and services) constituting the application. This combined platform configuration is
one dedicated instance of IIPEcosphere, in Figure 47 an application configuration taken as input
from the Application Layer is illustrated.

The platform instantiation process is defined based on IIPEcosphere meta-model, i.e., an instance
of IIPEcosphere can be used as input that defines how the platform shall be instantiated. The
platform instantiation process turns the configured information into source code artifacts, setup
information, deployment descriptors and executable build scripts. This process also significantly
contributes to the invisible complexity of this component. We will discuss also the instantiation process
in more details in Section 6.

Figure 47: Configuration and instantiation of Definition of applications and orchestration of services (comments cropped)

On top of the models and the instantiation process, the Configuration component just orchestrates
the relevant processes. The ConfigurationSetup (read from a Yaml setup file) defines the file
system paths where the meta-model, its instance and the instantiation process are defined (meta-
model and instantiation process are part of the respective release). The ConfigurationManager
ensures the consistency of the operations, currently of loading, validating and instantiating the model.
In future releases, also modifications to the actual instance of IIPEcosphere will be provided. The
configuration model, the actual settings and in particular the application data flows are reflected in
the ConfigurationAas. To ease UI integration, the ConfigurationAas offers operations to read
out the data flow graphs in various formats, to write back/delete data flow graphs, to create and delete
configuration variables, to change configuration variables and to initiate the application instantiation.
For these operations, it is essential that no arbitrary modifications are permitted. The result must
always be a valid configuration that can be instantiated. For this purpose, all operations perform a
validation through the IVML reasoner and persist the configuration model only if the model is valid.
Further, the PlatformInstantiator realizes a command line tool to perform the basic operations

118
IIP-Ecosphere Platform Handbook

of the ConfigurationManager, i.e., to allow a user to instantiate the platform and the defined
applications. The PlatformInstantiator offers various modes, ranging over the instantiation of
interfaces for applications, the full instantiation of applications, the instantiation of platform
components, etc.

The configuration model and the platform instantiation are subject to regression testing in the
continuous integration. While the validation within the configuration model is currently not as
extensive as it could be, partial results of the platform instantiation have been validated for
functionality, e.g., the instantiation of executable platform components, the creation of several
stream-based IoT example applications as well as the automated low-code generation of connectors.
In particular, the connectors were validated in the platform use case studies with partners (cf. Section
3.6.3.3), i.e., the respective input/output formats have been modeled in configuration, the connector
service integrations have been generated and the intake has been validated. To demonstrate the setup
of the platform, the platform instantiation as well as the creation of example service artifacts is part
of the Docker platform containers provided on DockerHub.

Following the structure of the previous section, we discuss now the implementation of the
configuration requirements. However, so far, we did not detail the structure of the IVML model and
the capabilities of the instantiation. This information is provided in Section 6, because we focus here
on the architectural side. To avoid two separate discussions of the realized requirements, Table 23
includes forward pointers to Section 6 and summarizes already the requirements state explained
there.

Table 23: Review of realized80 requirements for the configuration (based on Table 2, Table 3 and Table 22)

Requirement Summary
R8 SPL approaches are used for variant management.
R8a The platform contains an integrated configuration model for applications, services

and platform properties.
R8b Automated validation of the configuration model is supported in terms of the

constraints in the variability model and the EASy-producer IVML reasoner (cf.
Section 6).

R8c Automated derivation of platform instances is supported through the instantiation
process (cf. Section 6).

R12a Derivation of the documentation of data processing is currently not supported.
R17a Connectors are part of the configuration model (cf. Section 6).
R19f The configuration model allows specifying data mapping/format conversion

functions for connectors, not yet for all services. Data serializers are implicitly
derived during instantiation (cf. Section 6).

R19g Currently the configuration model does not support mechanisms for customization
or manipulation of metadata.

R20a Data paths/relations are defined in the configuration model in terms of service
meshes (cf. Section 6).

R20b Data paths/relations can have properties/parameters although currently only the
name is specified (cf. Section 6).

R25c The platform must manage the available resources. Resources are foreseen
through the conceptual foundation of the meta-model but not used (cf. Section 6).

R31c The required components to be installed into a container are currently not linked to
resources.

R31b Containers can contain optional components. Currently, services and resources are
not linked.

R34 The automated creation of containers is supported by the platform.

IIP-Ecosphere Platform Handbook
119

Requirement Summary
R34a A model validation is performed before instantiation and through the

ConfigurationManager can be performed before further platform operations.
R34b Currently no externally provided containers are supported.
R36 The platform shall enable configuration settings for resources (read/write). These

resource configuration settings may be reflected by the device management into
the configuration.

R40a RBAC roles are currently not specified in the configuration model.
R40b TLS certificates are currently not specified in the configuration model.
R41 Security mechanisms shall be integrated with common directory services.
R41a Directory services can be integrated through the identity store interface.
R41b The absence of directory services is currently not considered by the configuration.
R42 Further safety mechanisms are currently not part of the configuration model.
R43 Performance targets are currently not part of the configuration model.
R44 The configuration currently does not offer IDS-based connectors as optionally

configurable.
R64a The specification of the data fields for anonymization is currently not supported by

the configuration model.
R65a The specification of the data fields for anonymization of personal data is currently

not supported by configuration model.
R73e The data schema for storage services of structured data is currently not linked to

data storages.
R77a The platform currently does not support cloud services.
R80 Data (including meta-data) shall be described in the configuration model, including

data protection classes. Data types are supported, meta data or protection classes
are currently not part of the configuration model.

R86 The functionality of the data integration is currently not part of the configuration
model.

R89 Currently no data stores are defined in the configuration model.
R93 The platform is systematically configurable through a configuration model.
R94 The platform does support the automatic validation of the configuration model.
R94a Validating a configuration model with 50 resources and 5 applications shall be

completed in less than 1 second. The models currently do not reach this size, but
on example configurations validation is currently not a bottleneck.

R95 The configuration model does support automatic platform instantiation.
R95a The instantiation of a configuration model with 50 resources and 5 applications

shall be completed in less than 15 minutes. So far, test configurations up to 3
applications including all platform components require less than 3 minutes on a
computer in the same network as the (snapshot) code repository.

R96 The configuration model includes optional and alternative platform
components/services (cf. Section 6).

R96a The configuration describes properties of the platform components/services (cf.
Section 6).

R97 The configuration model defines applications running on the platform (cf. Section
6).

R97a An application configuration contains the configured services for the applications
(cf. Section 6).

R97b An application configuration contains the configured connectors for an application
(cf. Section 6).

R97c An application configuration must contain the data paths/relations of an
application (cf. Section 6).

120
IIP-Ecosphere Platform Handbook

Requirement Summary
R97d An application configuration does allow for alternative services (via families, cf.

Section 6).
R97e The configuration model currently does not allow for application templates.
R98 The configuration model does allow for customizations at different times in the

software lifecycle although not all relevant ones are defined (cf. Section 6).
R99 Information from the configuration model is currently not made available to other

components via internal connectors.
R100 The configuration model is currently a centralized model.
R101 Information provided in the AAS of components/services is currently not mapped

automatically into the configuration model.
R101a The transfer time for a configuration model with 50 resources and 5 applications is

currently unknown as R101 is not realized.
R112a Parameters of (AI) services are currently not described in the configuration model.
R112b Properties of the distribution of AI services shall be described in the configuration

model. Currently, the configuration contains only the information whether a service
is distributable.

R112c Currently no distribution applies.
R113a Technical dependencies to AI frameworks are available in the configuration model.

The automated instantiation into containers is still in realization.
R119b The release of a trained model is currently not considered in the configuration

model.
R119c The release of the trained model is currently not considered in the configuration

model.
R119e Changes initiated by AI model training are currently not subject to configurable

release or quality criteria.
R120 The configuration model must describe alternative AI components for an AI

method. This is realized in conjunction with R97d.
R122a Currently, runtime parameters and service families can be specified in the

configuration model and are considered during code generation.
R122c The adaptation is not part of this release.
R123 Enactment of parameter happens through the configuration/code generation,

enactment of alternative services through data plugins.
R123a The platform offers interfaces for updates.
R131 The platform allows for the creation and deployment of applications.
R131a The configuration model supports the specification of applications, their required

services, connectors and involved data paths.
R131b The configuration model allows for the versioning of applications and services.
R131c The configuration model allows for the the parameterization of services.
R131d The configuration model currently does not support application templates for

simplified configuration of requirements.
R131e The configuration model currently does not describe dependent applications, but

service chains in service meshes.
R131f The configuration of applications and data paths is currently not done in a

graphical way as no UI is provided.
R131g The platform supports the deployment of applications.
R132a The configuration model does support application-specific services.
R133a The platform must know the status of the services. Currently no runtime data is

reflected in the configuration.
R133b The platform must know the status of the running applications. Currently no

runtime data is reflected in the configuration.
R134 The platform supports the removal of applications/services.

IIP-Ecosphere Platform Handbook
121

Requirement Summary
R134a The platform supports the removal of deployed applications/services.
R134b The platform supports the removal of applications from the configuration model

via the configuration AAS.
R135 The platform shall support the update of applications. The configuration layer

currently does not provide detailed configuration manipulation operations.
R138 The platform provides mechanisms to realize an app store, in particular the

dynamic extensibility of the configuration model (although not yet through the
configuration AAS).

R139 The platform provides a user interface, which is in development.
R141 The platform provides a visualization of its collected monitoring data, but not yet

the processed data.

We conclude, that basic requirements for this layer are implemented, in particular also for services
and applications ([13] only states “the application”). However, there are many (cross-cutting)
requirements for the configuration in [13] and in several cases the underlying platform components
are not realized so that configuration modeling for those requirements is useless at the moment. These
components/requirements are scheduled for future releases.

Figure 48: Optimization and adaptation of service/container deployment

122
IIP-Ecosphere Platform Handbook

Figure 49: Adaptation of running services (comments cropped)

3.12 Application Layer
Ultimately, the Application Layer represents individual applications, i.e., it is the actual home of the
application configurations to be installed, the generated artifacts and additional application-specific
(handcrafted) components and services. The overall picture is depicted in Figure 50.

Currently, this layer does not really exist as platform instance/application configurations are defined
as part of the tests of the Configuration Layer or on the command line of the respective tooling. Thus,
generated and packaged artifacts are currently belonging to the Configuration Component (temporary,
generated artifacts folder). The setup and the application layer will change in the next releases.

Figure 50: Application Layer (comments cropped)

3.13 Platform Server(s)
As discussed above, the IIP-Ecosphere platform consists of several layers and many components.
However, so far there also is a component that provides the setup and lifecycle mechanisms for the
central IT-side of the platform, e.g., powering up the platform AAS service. At a glance, this component
does not provide new functionality or concepts and may not be worth mentioning. In fact, it is a vital

IIP-Ecosphere Platform Handbook
123

part for later platform instantiation, as it defines how central services can be configured, instantiate
and how these services are started. Moreover, it provides an initial simple command line interface to
operate with the IIP-Ecosphere platform, e.g., to start containers or services.

Figure 51 depicts the structural design of the platform component through using the server
implementations and server-related parts defined in all layers and components discussed before. As
stated above in this chapter, this component serves for two purposes:

1. Powering up the servers to run the IIP-Ecosphere platform. Therefore, the component defines
a lifecycle descriptor (PlatformLifecycleDescriptor), which reads information from the
PlatformSetup representing the YAML setup file. The lifecycle descriptor is loaded via JSL
into the LifecycleHandler, which, in turn, is called by the platform component during its
main program. During this startup process, all “installed” lifecycle descriptors (e.g., the
descriptor for the network manager; the platform instantiation is responsible for this) are also
started up. As part of the startup also the platform AAS is constructed, which contains the
platform “nameplate” (TechnicalInformation sub-model [2]), further software-specific
information (Platform sub-model) as well as a listing of all available application Artifacts
(service artifacts, containers, deployment plans).

2. Providing a simple command line interface (Cli) to experience the operations of the IIP-
Ecosphere platform. For the command line interface, simple means that we (currently) provide
access to some, particularly rather low-level functionality of the platform, which incrementally
shall be taken over into the platform, e.g., which service shall be deployed where shall be part
of the deployment component in the configuration layer. In addition, first higher-level
commands such as executing a deployment/undeployment plan are provided, which
adds/removes services implementation artifacts and starts/stops contained services that shall
be distributed across multiple devices. The command line interface does not rely on the
lifecycle mechanism, but on the PlatformSetup and, in particular, on the AAS clients of the
service and the resources layer to ease executing the operations defined there. Figure 52
illustrates an example interaction with the interactive mode of the command line interface,
here turning into the resources commands, showing the commands for resources (help),
listing the available resources and, finally, ending the client. For the single resource shown in
Figure 52, in particular the integrated container manager (for Docker) and various initial
runtime measurements for disk and memory allocation are shown. It is important to
emphasize that the command line performs its operations via the platform AAS and the
respective AAS clients for services and the ECS runtime.

124
IIP-Ecosphere Platform Handbook

Figure 51: Platform server(s) component

IIP-Ecosphere, interactive platform command line
AAS server: http://127.0.0.1:9001
AAS registry: http://127.0.0.1:9002/registry
Type "help" for help.
> resources
resources> help
 list
 help
 back
resources> list
- Resource a005056C00008
 systemdisktotal: 1023887356
 systemmemorytotal: 2147483647
 simplemeterlist: ["system.cpu.count","system.cpu.usage",
 "system.disk.free", "system.memory.free"…]
 containerSystemName: Docker
 systemmemoryfree: 2147483647
 systemdiskfree: 464061712
 systemmemoryused: 2147483647
 systemdiskusable: 464061712
 systemmemoryusage: 0.5555296172875698
 systemdiskused: 559825644
resources> back
> exit

Figure 52: Interaction with the preliminary interactive platform command line interface.

Using the platform command line interface, we validated the interaction among the components.
Therefore, we started platform, ECS runtime and service manager component as individual programs.
Through the command line interface, we validated the resource represented by the ECS runtime and
started a simple generated application (cf. Section 6). We identified here the following issues:

• BaSyx issues exceptions when checking whether a non-existing AAS exists through trying to
access it.

IIP-Ecosphere Platform Handbook
125

• Long running commands such as starting services are currently rather quiet on the command
line interface, i.e., they do not show intermediary steps while the logs on the respective device
indicate the actual state. AAS do not support return streams, so either polling from the caller
or transmitting the results via the Transport Layer could be options for improvement.

We also validated the execution of services in a service manager container, starting and stopping of
containers via the platform and the ECS runtime execution in terms of a (Docker-out-of-Docker)
container. Please refer to Section 8.4 on how to install, instantiate and containerize the IIP-Ecosphere
platform, i.e., to perform the steps that we also executed for validating the command line interface
and the instantiated platform components. The platform CLI also supports creating snapshots of the
platform AAS104 that can be explored with the AASX Package Explorer105.

As the platform layer shall also be used as basis for a Management User Interface (cf. Section 3.14),
additional information that is usable on that layer may be required. For this purpose, we added a listing
of available artifacts (containers, service artifacts, deployment plans) to the Platform AAS, so that they
can be selected, inspected or executed on UI level. Akin, further information and interfaces regarding
the configuration will be required.

3.14 Management User Interface
As already stated in [41, 13], no real user interface was scheduled for the IIP-Ecosphere platform in the
grant agreement. However, the value of an accessible and usable user interface for a platform (over a
simple CLI as discussed in Section 3.13) is evident. For this reason, the platform team of IIP-Ecosphere
aims at providing a management user interface, i.e., a web user interface that allows for managing the
platform operations such as starting or composing an application.

Currently, the user interface is initial and focuses on displaying the information that is accessible
through the CLI as well as basic management operations provided by the CLI. Here, the Platform AAS
forms the information model the Management UI can rely on and one interesting question is whether
it is possible to realize an efficient Management UI based on an AAS. Challenging tasks include reading
the nested AAS REST structures or calling AAS operations, as BaSyx does so far not provide TypeScript
support. While for some operations on a command line we can assume that the user can look them
up, e.g., the URI to a service artifact, this may not be the right approach for a Web UI. Thus, as part of
creating a management User Interface, we also have to provide additional information, e.g., on the
available artifacts, containers or deployment plans and to make them “executable” via the UI.

The user interface requires some form of setup, in particular knowledge about the installation location
of the platform AAS servers. To resemble UI release versions and integration with the platform
instantiation and installation approach, the management UI allows for compiling the TypeScript code
for Angular while allowing for an external setup through a JSON file106. The compilation happens as
part of the Continuous Integration of the IIP-Ecosphere platform, the customization during the
instantiation based on information in the configuration model. The platform instantiation turns the
compiled Management UI into an instantiated version, where in particular the settings in the Angular
environment are adjusted or respective start scripts, e.g., for an Express webserver are generated.

104 Currently it seems that BaSyx allows only a single snapshot per run. This may change in future versions.
105 https://www.plattform-i40.de/IP/Redaktion/DE/Newsletter/2019/Ausgabe21/2019-21-Praxisbeispiel2.html
tested with version 2021-08-17.alpha.
106 https://mokkapps.de/blog/how-to-build-an-angular-app-once-and-deploy-it-to-multiple-environments/

https://www.plattform-i40.de/IP/Redaktion/DE/Newsletter/2019/Ausgabe21/2019-21-Praxisbeispiel2.html
https://mokkapps.de/blog/how-to-build-an-angular-app-once-and-deploy-it-to-multiple-environments/

126
IIP-Ecosphere Platform Handbook

3.15 Test support
So far, we focused on the elements to construct the platform, the services as well as the applications.
In this section, we provide a cross-cutting overview on the testing support, in particular to answer the
question, how the platform supports the user in testing his/her own services and applications.

Besides internal component and service testing, in particular of services supplied with the platform, it
is essential to test user-developed services as well as their interactions in an application. At a glance,
the answer might be to construct a unit test and to test the supplied code. However, reality is not so
trivial, as, e.g., connectors may be based on external devices or their server instances, e.g., MQTT
broker or OPC UA server, and these devices may not be available in certain testing situations.
Moreover, setting up a test for a single spring-based service involving a Java or, in the more complex
case, a Python service (with involved Java integration and Python service environment) requires much
internal knowledge and may even lead to problems if the service layer is equipped with alternative
service execution engines that are not considered by the test.

As a general advice, we recommend to apply testing to all levels of an application, ranging from tests
of the code that you supply up to entire applications. In particular, testing of services before running
the application instantiation and packaging process can usually save much time, i.e., as usual, getting
rid of failures in individual services shall be performed before integration tests of the application.

Thus, the platform offers different forms of testing support that we will summarize here:

• Testing an individual connector: Although we demonstrate in the RoutingTest regression test
how to write and integrate a self-supplied simple connector, typically, a connector is a kind of
platform-supported service. Thus, the connector itself, either a model-based or channel-based
connector is already tested sufficiently by platform tests. The instantiation process wraps the
connector into a service and adds generated input/output data translators or user-supplied
data translators or event handlers based on the data specification of the configuration model
to turn the generic connector type into an application-specific connector. Although the user-
supplied parts shall be tested individually, it always remains unclear whether they will work
correctly in the interaction context of a connector. For this purpose, the generated code for
the configured connector sets up an environment that the connector can be executed
individually. By default, the connector runs against the configured device, e.g., the OPC UA
connector against the OPC UA server of the configured device. As this requires the device at
hands, the test may fail in a CI environment. Thus, it is possible to execute the test as a stand-
alone program (for the target environment) and to mock the connector (as set up in the
configuration model). When the connector is mocked, the code generator wraps the connector
differently into a service, i.e., it creates a connector instance, but detangles it from the
execution while pretending to feed the connector output with data from a JSON file (via
functionality provided by the service environment). Such a mocked connector allows you to
experiment with different data settings even in a CI environment.

• Testing individual services: For a service it is more likely to integrate self-supplied code. This
code shall be tested individually. However, as for a connector, such tests lack the full
environment, e.g., the surrounding Python environment or the service lifecycle. Here, the
generated test cases set up an environment that fits to the actual service execution
environment, per default Spring Cloud stream. Akin to mocked connectors, a JSON file
determines the input data (which may consist of multiple data type instances, and may define
a timed ingestion behavior), which is fed through the DataWrapper into the service through
the actual mechanisms of the service environment or the platform, e.g., the data transfer.
Resulting data, synchronous or asynchronous, is received by the test and basically emitted. In
the generated version, all data received from the service under testing are asserted as true as

IIP-Ecosphere Platform Handbook
127

we do not employ a data correctness specification at the moment. Basically, the test only
ensures that data shall come out of a test (assuming that data was fed into it). Statistics about
received data types are collected by default and can be used for simple asserts. Further, you
may extend the test to determine more complex assertion behavior and to turn it into a real
regression test.

• Mocking of applications: Although components may be working after applying the test
opportunities discussed above, there is no guarantee that the integrated application will be
working. Here, again, mocking may be required as not all devices or even software
environments are available, that you would need for mocking tests. Connectors can be mocked
as above, e.g., if certain devices and their OPC UA servers are not available. Services can also
be mocked, by replacing the service classes defined in the model, e.g., by extensions of the
services that disable some functionality. One example is to replace a TensorFlow-based Python
AI script (with one reason that you may not have required GPU capabilities at hands) by a
simple mock script and to tell the generation to use the mock script instead of the original
script. To ease this, the IVML configuration model allows you to define additional variables,
e.g., one for testing and to define functions that return the actual or, in testing, the mocking
service class. Testing may be enabled, e.g., by modifying the testing variable before
instantiation or by defining two different top-level models and to change the model to use in
the calls to the PlatformInstantiator tool.

• Testing the application: Despite all tests, ultimately also the application with all services and
all required devices in place must be tested.

It is important to mention that only testing on application-level may include all resources and service
implementations in the final form as it will be deployed. Thus, accidental overlaps of resources, e.g.,
identity stores may only be detected when running an integrated application.

The requirements documents [41, 13] even demand in-place pre-deployment tests. Currently, the
platform does not offer functionality for these optional (but important) requirements.

128
IIP-Ecosphere Platform Handbook

4 Architectural Constraints
Besides structure and communication sequences, often an architecture explicitly or implicitly defines
constraints that must be obeyed by an implementation. We summarize and explain the constraints for
the IIP-Ecosphere platform here:

C1. Higher layers and contained components are allowed to have dependencies only to
downstream layers and components, if possible only to the directly adjacent lower layer. This
constraint is induced by the basic layered architecture style of the IIP-Ecosphere platform.

C2. As an exception from C1, the ECS runtime shall not depend on the Services Layer so that the
services layer can be installed separately (as explained in Section 3). Both, Services Layer and
ECS runtime may depend on certain classes of the services environment.

C3. Wrapped singleton components or libraries shall not be called by other components than
the wrapper itself. Basically, this applies to transport and connector protocols, the AAS
implementation (BaSyx), but also for container management libraries such as Docker. This
constraint intentionally focuses on singleton components/libraries, as some libraries may
occur in multiple component dependencies, e.g., the stream processing framework due to
the need for different protocol/binder implementations. In turn, this also applies to some
transport/connector protocol client implementations. Another exception is
support.aas.basyx.server, which is allowed to access (as the only component)
support.aas.basyx as it represents the server component with full dependencies.

C4. Support components for C3 shall be realized as optional components, e.g., the Spring service
environment refining the generic Java environment. There shall be no references into such
components except for refining components. In particular, generic components shall not
reference their specialized components. For providing access to the specialized
implementation, descriptors, factories or facades are to be used where the implementation
is provided by JSL.

C5. Protocol servers for testing such as Apache Qpid, HiveMq or Moquette shall be in testing
components and no other component shall directly use classes from them (although Maven
requires explicitly naming also those transitive dependencies). These testing servers may be
used during platform instantiation to provide a broker/server for a selected protocol.

C6. Production code must not have dependencies to alternative or optional components. As a
rule of thumb, generic components without “suffix” names (representing the generic part of
a component) shall not directly access related optional/alternative components indicated by
“suffix” names, e.g., transport is the generic transport layer while transport.amp the
alternative for the AMPQ protocol. This applies to the support layer (no access to
BaSyx/Server), the transport binders (e.g., transport.spring vs.
transport.spring.amqp), the connectors, the service environment
(services.environment vs. services.environment.spring), the services (service
manager services vs. services.spring) the ECS-Runtime (e.g., ecsRuntime vs.
ecsRuntime.docker) etc. In contrast to production code, test code (Maven scope “test”)
may declare dependencies to specific alternatives to allow for functional testing, e.g., to rely
explicitly on the AMPQ transport protocol. Although alternatives shall be tested equally on
their level, it is also clear that component testing with specific alternatives just shows the
functionality for the assumed/selected alternatives.

C7. Generated artifacts shall be separated from manual code (usually an own top-level folder
such as gen) and generated artifacts shall not be modified as they may/will be re-generated
upon request.

C8. Implementation of services shall be separated per service, so that services can be
composed/integrated free of other dependencies. For convenience, in testing code, we may

IIP-Ecosphere Platform Handbook
129

intentionally validate this rule, e.g., test.configuration.configuration implements
all service artifacts for all tests in configuration.configuration.

C9. Exception handling is often not considered a topic for architectural constraints. However,
the basic decisions on how and where to use/handle exceptions are important as they
enforce certain responsibilities. Moreover, some architecture modeling languages like UML
allow for the specification of exceptions. Exceptions indicate abnormal situations in the
program execution that shall not be handled by normal program code rather than by
stopping the execution at the point of occurrence and tracing back the method calls until the
exception at hands is handled (or on top-level it terminates the program or the actual
thread). While often programmers try to handle an exception at the point where it obviously
occurs (in Java, where a checked exception could be thrown that must be handled), we
believe that in most cases the caller, i.e., the cause of executing the code that throws the
exception shall be informed, which does not mean that each exception must be transported
and handled in top-level code. For example, consider some complex data format processing
code, e.g., reading an AASX file for an asset administration shell. If we handle an Input-Output
exception in that code, the caller does not know that and why the format processing fails.
Let us now assume, that reading the AASX file was triggered by the ECS runtime when
building the AAS of the ECS runtime, e.g., to link device vendor and ECS AAS. Here, the
lifecycle handler of the ECS runtime (more or less top-level code) that starts the creation of
the ECS AAS is not interested in why an AASX file processing fails. However, the code creating
the AAS trying to establish the AAS link is better suited to handle the exception, e.g., to insert
an empty link or to log the problem. Thereby, logging (cf. Sections 2 and 8.1) is often not the
right answer to an exception, in particular not emitting an exception stack trace to the
console (which may not be logged properly). In contrast, the programmer shall think about
handling the exception in a manner that processing can succeed, e.g., inserting an empty link
into the AAS rather than no AAS property at all, which may cause failures in other parts of
the system relying on the assumption that such a property exists. In particular the type of the
used exceptions shall be selected carefully (cf. Sections 8.1).

C10. Apply defensive logging, i.e., carefully think about what is an “error”, a “warning”, an
“information”. Errors shall only be emitted if a component will fail to operate. If the
component can compensate this, e.g., by falling back to some strategy or default plugin, then
a warning is more adequate.

C11. Logging setup/filtering is decided during integration, not before. As some “bigger”
components like BaSyx, Spring or even Apache QPID-J ship with their own ideas how to set
up and configure logging, deferring the logging decision (SLF4J, LogBack, Apache, etc.) and
the setup what to log as long as possible. Thus, all components must not define a concrete
logging implementation in their production code dependencies, only in their test
dependencies. Ultimately, the code generation that is performing the integration
automatically must know whether further dependencies are needed, existing dependencies
can be used and how the logging of the components at hands shall be set up.

It would be desirable to check and enforce these dependencies. However, so far tools that we tried,
e.g., in the continuous integration, failed for multiple components using a central or even adequately
distributed rule set as they require an application rather than a component to be checked. We will try
to find and integrate a feasible tool as soon as possible.

130
IIP-Ecosphere Platform Handbook

5 Asset Administration Shells
As stated above, the IIP-Ecosphere platform heavily relies on asset administration shells (AAS) to
describe the capabilities and interfaces of its components. Currently, only few standard structures for
AAS/sub-models exist while many are still in development, e.g., a software type-plate [2, 43] or a
description of qualities of service (QoS). However, it is not feasible for the work on the IIP-Ecosphere
platform to wait until such standards are defined. Thus, we follow an agile and pragmatic approach to
AAS modeling here:

1. As long as no guidelines for AAS in IIP-Ecosphere exist, the IIP-Ecosphere platform will draft
AAS that contain the most relevant information for its operation, i.e., for now the IIP-
Ecosphere platform relies on AAS prototypes. All names and sub-structures shall be defined
in terms of constants so that names and structures can be adapted (within limits). AAS of the
IIP-Ecosphere platform shall be tested individually and also in integration settings to handle
and to judge the impact of modifications. Tests shall also rely on the defined constants rather
than on local String literals. In this stage, we pragmatically focus on AAS describing instances.

2. Discussions with third parties on (proto-)standardized AAS structures are ongoing. As soon as
results from these discussions are available, a guideline for AAS modeling in IIP-Ecosphere
shall be drafted. The experience made with prototyping AAS in the IIP-Ecosphere platform will
be considered in these guidelines. At this point, also type AAS shall be provided.

3. The IIP-Ecosphere platform will modify the AAS prototypes and augment the information (e.g.
ECLASS references) to comply with the guidelines. This may lead to a re-structuring of the
AAS prototypes.

With this approach in mind, we designed and partially realized the prototypical IIP-Ecosphere AAS
structure shown in Figure 53. As already explained in Section 3.1.2, we separate between AAS
describing an (external) artifact and internal information (usually in sub-models). AAS do exist for

• The platform AAS with its various sub-models like name plate, dynamic network port
assignment, transport setup, (S3) storage access, (available) artifacts such as containers or
deployment plans, installed connector/service types and their utilized data types, the device
management and available devices (with installed/running containers, installed service
artifacts, running services).

• Further assets represented in their own AAS like devices, service107 or composed applications
(with vendor information). Device and service AAS are linked from the respective platform
submodels to make the information in the AAS available. For each application running on top
of the platform, an AAS shall be provided (currently via the TraceToAasService discussed in
Section 3.7.3.1), which states the creator of the App but lists also the utilized services and may
provide application specific operations.

For the platform AAS and its sub-models, we distinguish between installed/available descriptors and
their active instances at runtime, in particular as in many cases only the active instances provide the
full information about in/outgoing types. Examples are in particular the connectors, the services and
their relations, the containers etc. These structures are dynamic, i.e., they change due to installed
components as well as due to instantiated/terminated instances. This is in particular the case for
connectors and services, subsequently also for applications. Some sub-models are active, in particular

107 So far, the software nameplate is not available as standard. As platform-provided services typically involve
two vendors, the actual service creator and the organization that created the integration into the platform, a
linking of AAS would be required. So far, this linking is not realized, rather than just one AAS is provided.

IIP-Ecosphere Platform Handbook
131

those providing operations. One example for an active AAS is the optional netMgt submodel, which
provides access to the local/global NetworkManagement defined in the Support Layer.

It is important to emphasize that the structure shown here is not static. It is dynamic in its elements as
explained above, but it is also dynamic in its overall structure and contributions, in particular if the AAS
is centrally deployed and parts are added remotely. A specific example is the relation between
resources and services. When an ECS runtime comes up, it contributes itself to the resources collection.
When a service manager starts, it contributes further operations to the resource it is running on, i.e.,
both Layers contribute into the same AAS sub-model (elements collection), because in this case the
components have information and operations that they only can share individually but that are part of
the same topic, namely the runtime interface of a resource.

Figure 53: AAS structure of the IIP-Ecosphere platform (preliminary, incomplete)

Figure 54 depicts a screenshot illustrating a fragment of the IIP-Ecosphere platform AAS in the AASX
Package Explorer, i.e., an excerpt of the full AAS shown in Figure 53.

“Nameplate”

NetworkTransport

Connector Types

Data Types

Services

Devices

Device Management

Storage

Container

Artifacts

Platform-AAS

Documentation

Artifacts

Device-AAS

Service-AASApplication-AAS

Service Types

Configuration Platform

ApplicationInstances

132
IIP-Ecosphere Platform Handbook

Figure 54: IIP-Ecosphere AAS in the AASX Package Explorer showing a running service (SimpleReceiver).

As the IIP-Ecosphere AAS is rather dynamic, we can already draw some conclusions on lessons learned
with BaSyx (based on the integrated version through the support layer):

• Remotely deployed AAS with operations and properties realized in terms of attached functors
typically require uniquely serializable functor objects, i.e., they do not work with simple
lambda functors or serializable lambda functors.

• When obtaining a remotely deployed AAS, the AAS is turned into a serialized format as already
briefly mentioned in Section 3.7.3, i.e., all functors such as getters, setters or operations are
serialized, to obtain the values of the properties the getters are even executed. If getters are
bound to an AAS implementation server, that server must be ready to serve connections at the
point in time when the remote AAS is requested (which may happen in parallel initiated by
other components) and currently for each property a network connection is created by the
respective BaSyx connector and the value is requested. This seriously affects the performance
of obtaining and using a remote AAS. It happened to us that in such a situation a potentially
endless loop occurred forcing us to re-think a rather obvious implementation approach in
terms of getter functors. As discussed in Section 3.7.3, we suggest using functors that map to
local data rather than to remote data. The local data object may be updated in parallel through
a different process, e.g., a Transport Layer connector. Dependent on the implementation, each
serialized AAS then has its own remote data object, leading to a distributed setup of AAS that
can be kept up to date via Transport Layer mechanisms. Directly writing values into an AAS
might be an alternative, but in the remote deployment case, the serialized AAS implicitly
performs update requests on the original remote AAS, i.e., probably leading to reduced
performance.

IIP-Ecosphere Platform Handbook
133

• When writing larger portions of structured data, in particular binary data, there is a conversion
problem in the BaSyx version that we are using. Types like Base64Binary are not handled
correctly. Currently, we encode such data through a Base64 String encoder (similar to the
contents of File Data Elements).

• The IIP-Ecosphere abstraction appears to be easier to use and requires less code than plain
BaSyx [3], but this was a design goal. Moreover, the AAS implementation can be replaced
seamlessly, also by a non-AAS interface realization.

• So far (as far as we know), BaSyx does not provide support for resolving references to the
referenced element. While this may not be a serious problem when following such links is not
crucial, it is an obstacle for platform submodels such as services where we need to reference
to a related service, resolve that and access the actual state. This absent functionality drove
some of the structure decisions for our sub-models. Similarly, we use URIs to link sub-models
and external AAS, in particular that the CLI/Management UI can provide information stated in
the AAS.

• When deciding about the concept to realize, in particular AAS vs. sub-model, take the industrial
production viewpoint where the AAS concept originates from and try to identify the asset that
is described. If the modeling is about an asset (potentially provided by a different organization),
typically an AAS is required. When detailing (own) information, often an own AAS is more
adequate.

134
IIP-Ecosphere Platform Handbook

6 Platform Configuration Model
This section provides an overview on the IVML configuration model and the concepts used to model
configuration options for the IIP-Ecosphere platform. We now give an overview of the configuration
model, then, from a more pragmatic point of view, an insight into a simple example configuration as
this is required for running the platform. Section 6.1 dives deeper into the configuration model by
discussing applied modeling patterns, Section 6.2 provides more details on the structure of the
configuration meta-model as well as on adjustments for a model managed by the platform, Section 6.3
discusses additional support for standardized protocols or connectors such as OPC UA, and Section 6.4
details the instantiation process. Section 6.5 discusses the container instantiation. We then turn to the
development of applications based on the configuration model. Section 6.6 outlines some example
applications shipped with the platform. Section 6.7 discusses the steps needed to create an application
with the configuration and the instantiation process, Section 6.8 illustrates typical implementation
project structures, and Section 6.9 illustrates default build sequences and their build commands.
Finally, Section 6.10 summarizes service implementation considerations.

In essence, the configuration model mirrors the component hierarchy of IIP-Ecosphere and describes
per component the configurable elements, their dependencies and constraints. IVML is the Integrated
Variability Modeling Language [10] as realized by the EASy-Producer toolset [36]. The configuration
model consists of three parts:

1. The configuration meta-model introducing the configurable elements, their structure,
relations, properties and where adequate also consistency constraints.

2. A platform configuration based on the configuration model describing the configuration of a
certain platform installation. Platform-specific structures (like services, service dependencies
and service relations to form an application), but also the specific selection of alternative
components, e.g., various transport protocols, service execution environments, container
managers, are defined in the platform configuration. A platform configuration may introduce
further, application/installation specific constraints.

3. A valid platform configuration complies with the configuration meta-model and fulfills all
constraints. Such a valid platform configuration can be instantiated through an instantiation
model, consisting of an instantiation process description (VIL, variability implementation
language) and, where adequate, artifact instantiation templates (VTL, variability template
language) [15]. In IIP-Ecosphere, both languages are used to instantiate a platform
configuration into code and build specification artifacts, to execute and to package the
created artifacts.

4. VIL and VTL can be used at runtime to adapt the underlying system [8]. These capabilities will
be used in the last project year to allow for self-adaptation of the IIP-Ecosphere platform.

The configuration model is taken up by the configuration component (Section 3.11) and used for
platform instantiation and runtime adaptation. The configuration component allows for high-level
model operations.

As illustrated in Figure 55, the configuration meta-model reflects the layers and components of the IIP-
Ecosphere platform, each given in terms of an IVML project. The most basic project (MetaConcepts)
introduces even more abstract, i.e., meta-meta, concepts for generic adaptive software systems. These
concepts are refined into IIP-Ecosphere specific concepts in the remaining models. The first IIP-
Ecosphere specific model describes the DataTypes used in the platform, in particular
PrimitiveType and RecordType consisting of files of DataType instances. Some specific primitive

IIP-Ecosphere Platform Handbook
135

types are defined in this model and frozen108 already on that level. The remaining levels will be
described as soon as they are realized.

The platform instantiation takes up the data types and turns them into language-specific artifacts, e.g.,
Java or Python classes. Similarly, corresponding serialization mechanisms to be used with the
Transport component are generated. So far, there are no basic settings for the Connectors.

Figure 55: Illustrative structure of the IVML IIP-Ecosphere platform meta-model (simplified).

108 Frozen elements cannot be modified outside the defining IVML project. Only frozen elements can be
instantiated before runtime, while the remaining elements may be frozen later or remain changeable for
runtime adaptation. The MetaConcepts model defines mechanisms to conditionally control the freezing and
also the CReversibleProperty, which explicitly re-defines its value to remain unfrozen.

DataTypes

MetaConcepts

Transport

Connectors

Services

Devices

Applications

CResource CComponent CFamily

CConnector
• destination

DataType
PrimitiveType

RecordType Field

IntegerType°, LongType°, StringType°, BooleanType°, FloatType°, DoubleType°

*

Legend
IVML project, dependency

*
CDataComponent
• input
• output
• parameter

*

CStructuralProperty
CIrreversibleProperty
• value°
• type

CReversibleProperty
• value

Configurable element, relation
Frozen element, #collapsed hierarchy°

Aas
AasProtocol aasProtocol, AasSchema, Persistency, Address aasServer, aasRegistryServer, aasImplServer

ProtocolType, TransportProtocol# transportProtocol

ServiceBase
Service

IOType, ServiceKind
ServiceFamily

JavaService

PythonService
*

ProtocolType, TransportProtocol# transportProtocol

Application ServiceMesh

MeshElement

MeshSource

MeshInnerElement MeshSink

MeshProcessor
**

Configuration

IIP-Ecosphere

Connector OpcUaV1Connector

EcsDevice

Resources DeviceRegistry PackageStore DeviceMgtStore DeviceMgtStorageServer

136
IIP-Ecosphere Platform Handbook

On the service level, several refinements of the IIP-Ecosphere service term are defined as configurable
elements. The ServiceBase is abstract and contains information common to all services, e.g., name,
id, version, description, input types, output types, service kind or operation mode
(synchronous/asynchronous). Already the ServiceBase defines constraints prescribing which
information must be present for which kind of service. Although we might use the service kind as
hierarchy discriminator here, we opted for building a hierarchy along the implementation levels rather
than the service kinds, as service kind differences can easily be handled by constraints while the
implementation type is more important for the subsequent code generation. A Service is a
refinement of ServiceBase and also the parent of language specific services like JavaService (e.g.,
detailed by a Java qualified class name denoting the implementation) or PythonService. A special
kind of Service is a machine/platform Connector, representing the specific connectors implemented in
the Connector component (only OPC-UA is shown here, similar elements exist for AAS, MQTTv3,
MQTTv5 and AMQP). A ServiceFamily represents multiple, alternative but functionally equivalent
services with the same input/output types. Service families steer the selection of alternative services
at runtime. Although strange at a glance, a ServiceFamily (representing a concrete selection of one
out of many services) is defined as a kind of service (it inherits from ServiceBase). This allows to
transparently use a ServiceFamily wherever a Service can be used. From the configured services,
the code generation derives implementation interfaces (Java, Python) and service stubs (Java) for the
integration of non-Java service implementations.

The Devices module defines the properties of the ECS runtime, in particular the container manager
to use. Moreover, it defines the EcsDevice, which represents an installed/connected device. In the
next release we plan that EcsDevice instances steer the automated creation of Docker containers as
well as the automated and optimized assignment of containers to resources.

The Applications module introduces one or multiple applications consisting of one or multiple
ServiceMesh instances. A ServiceMesh is a directed graph (as introduced in Section 3.1.2) rooted
by sources, linked by connectors/relations possibly leading to sinks. Each node in such a graph has an
implementation in terms of a ServiceBase, which is refined to application-specific Java or services
as well as platform-supplied services like connectors or pre-integrated services like the KODEX, the
RapidMiner RTSA or the Trace2AAS service. Services declare their input and output data types,
typically for forward or backward data flows (cf. Section 3.1.2). In the model, service properties are
pulled up from service level to mesh level during model validation and allow for checking whether a
flow graph is valid (through correctly sequenced input/output types of the services). During code
generation, individual applications or alternatively all applications are processed, i.e., the service
meshes are traversed and stream engine glue code for each node is generated. In the default case,
Java classes with Spring Cloud Stream annotations are created and bound to the respective service
interfaces. Based on the given implementation class names, the implementing services are dynamically
instantiated, mapped into the respective AAS (via the ServiceMapper from the service environment)
and made available for monitoring and management.

For building up AAS, e.g., to trace platform operations or to represent services, the configuration model
also reflects basic vendor information that is required to instantiate respective AAS. This information
can optionally be attached to an application or a service. Moreover, nameplate information items can
be reused to increase consistency, e.g., if a “vendor” such as IIP-Ecosphere created multiple services.

Besides code artifacts also build specifications (Maven), assembly specifications, Spring application
specifications, deployment descriptors, logging setting files, JSL specifications and, partially, test
classes (for validating generated Yaml files) are created automatically. For the three major platform
components, the platform AAS server (based on the platform component discussed in Section 3.13,
currently without further services), the ECS runtime and the service manager, the basic AAS settings

IIP-Ecosphere Platform Handbook
137

as well as further settings are instantiated into respective Yaml application specification. Finally, the
generated build specifications are executed so that for a complete instantiation, three platform
artifacts and one combined Java/Python artifact per application is generated.

We do not provide a more detailed discussion of the concepts in the meta-model or the instantiation
process at this point in time because both models are still in development and usually it is not expected
that users of the platform modify the models. However, as long as there is no user interface, a user
must be able to describe a platform configuration in order to perform an instantiation. Therefore, we
briefly provide an insight into a simple testing model.

project SimpleMesh {

 import IIPEcosphere;

 // binding annotation omitted

 // ------------ component setup ------------------

 serializer = Serializer::Json;
 // serviceManager, containerManager are already defined

 aasServer = {
 schema = AasSchema::HTTP,
 port = 9001,
 host = "127.0.0.1"
 };

 // ...

 // ------------ data types ------------------

 RecordType rec1 = {
 name = "Rec1",
 fields = {
 Field {
 name = "intField",
 type = refBy(IntegerType)
 }, Field {
 name = "stringField",
 type = refBy(StringType)
 }
 }
 };

 // ...

 // ------------ individual, reusable services ------------------

 Service mySourceService = JavaService {
 id = "SimpleSource",
 name = "Simple Data Source",
 description = "",
 ver = "0.1.0",
 deployable = true,
 asynchronous = true,
 class =
 "de.iip_ecosphere.platform.test.apps.serviceImpl.SimpleSourceImpl",
 artifact = "de.iip-ecosphere.platform:apps.ServiceImpl:" + iipVer,
 kind = ServiceKind::SOURCE_SERVICE,
 output = {{type=refBy(rec1)}}
 };

Figure 56: First part of a simple platform configuration.

138
IIP-Ecosphere Platform Handbook

Figure 56 depicts the first part of a simple platform configuration used for testing. A model is defined
in terms of IVML, a textual DSL for variability modeling. Each model is surrounded by a project
namespace, here named SimpleMesh. Within that namespace, first model imports are stated, here
an import of the IIP-Ecospere configuration meta-model (IIPEcosphere). After this header, the first
configuration value definitions are stated, typically as value assignments to typed variables (a typed
variable indicates a configuration option in IVML). Typed variables can form complex types that we call
compounds in IVML. Here, the serializer is defined to be Json, an enumeration literal for serializers
defined in the meta-model. Then the global aasServer receives its schema, port number and host
name (similarly but not shown for AAS registry and local AAS implementation server). Next, we define
the application datatypes, typically records.

While the variables discussed before are pre-defined by the meta-model, the data type is now given in
terms of an own variable named rec1 of type RecordType (defined in the meta-model as a
compound, not illustrated here). A record has a name (turned e.g., into a Java class name during
instantiation) and field, each with a name and a type. Types are references (stated by refBy), i.e., we
define a link to an already defined variable, here the pre-defined Integer and String type.

Following the definition of the variable rec1, we then introduce a Java service, a hand-crafted data
source (for testing, it will create arbitrary data of type rec1). The source is described by its
identification, its name, an empty description, a version, whether it is deployable, whether it is a
synchronous or asynchronous service and its implementation class located in the given Maven artifact.
Please note that we use here the implementation version of the platform defined by the meta-model
in the variable iipVer. The service is a source service (one of the four main service kinds) and its
output is constituted by one record, namely rec1. In fact, multiple types can be given, all in terms of
a structured type currently just having a type field (to be extended later), therefore the double
brackets, the outer one for a collection instance, the inner one for the structure type.

 // ------------ application and service nets ------------------

 Application myApp = {
 id = "SimpleMeshApp",
 name = "Simple Mesh Testing App",
 ver = "0.1.0",
 description = "",
 services = {refBy(myMesh)}
 };

 ServiceMesh myMesh = {
 description = "initial service net",
 sources = {refBy(mySource)}
 };

 MeshSource mySource = {
 impl = refBy(mySourceService),
 next = {refBy(myConnMySourceMyReceiver)}
 };

 MeshConnector myConnMySourceMyReceiver = {
 name = "Source->Receiver",
 next = refBy(myReceiver)
 };

 MeshSink myReceiver = {
 impl = refBy(myReceiverService)
 };

Figure 57: Second part of the simple platform configuration.

IIP-Ecosphere Platform Handbook
139

The second part of the example in Figure 57 defines an application with a simple service mesh. First an
application is defined, again with identification, name, version and empty description. Then the service
meshes are stated, here a single reference to myMesh. myMesh potentially consists of multiple sources,
we just have mySource as source mesh element. mySource uses the previously defined
mySourceService as implementation, as well as the next mesh element in terms of a mesh
connector/relation. A synchronous source may also define a polling interval. Currently, mesh
connectors have just a name but further properties may follow (otherwise we could directly reference
mesh elements among each other). The mesh connector links further to the receiver, which states its
implementation as myReceiverService (similar to mySourceService but not shown here).

 freeze {
 aasServer;
 serializer;
 // ...
 .;
 };

}

Figure 58: Final part of the simple platform configuration.

The final part is important for the instantiation. For various reasons, variable values defined in IVML
are not per se considered final, rather they can be overwritten in importing modules/project. Turning
such a configuration into code is problematic, in particular if code parts are deleted based on non-final
decision (deleted parts are usually deleted). Thus, IVML has the notion of freezing variables. Frozen
variables are considered final and can be instantiated safely. Figure 58 illustrates the freezing of this
model. Within the freeze block, first variables from the meta-model that have been configured are
listed for freezing. Finally, every variable declared in this project (shortcut “.” like in a command shell)
is frozen. Typically, in systems with dynamic instantiation at runtime, freezing is conditional, i.e., stated
variables are filtered according to a given condition. In the original model used for testing, this
condition is based on the so-called binding time, the latest time when a decision must be made (here
compile time). As we just aimed at explaining how a platform configuration looks like, we intentionally
left out the required attachment of binding times at the beginning of the model and the freeze
condition here. Ultimately, Figure 58 ends with the closing bracket for the namespace of the
SimpleMesh project.

Although the configuration shown here looks pretty structural and might be represented in any other
nested configuration language, we did not detail the validation constraints that are imposed by the
meta-model, e.g., that services are configured correctly and services meshes fit together. For now, the
constraint setup is initial and several constraints are currently missing. However, the already defined
constraints can quickly lead to validation errors issued by the EASy-Producer reasoner. This validation
is important, as an invalid model typically leads to invalid artifacts that, e.g., cannot be compiled. Work
is still needed here to make the validation messages more domain-specific and user friendly.

In summary, the code generation based on the IIP-Ecosphere configuration model creates more than
14 different types of artifacts (Maven XML, assembly XML, Java source, Python source, application
Yaml, logging XML, Java test code, Windows batch/Linux shell startup scripts, Linux/system service
descriptors, README files, Broker setup specifications, Docker files, Type script files, Angular
environment setups), which leads to different types of artifact structures, e.g., various forms of Java
code. The number of generated artifacts varies with the number of services/mesh elements defined
per application/platform configuration.

Besides a brief explanation of a configuration model, it is probably relevant to the reader to have
executable examples or tutorials at hands. We will cover this topic in Section 6.5.

140
IIP-Ecosphere Platform Handbook

6.1 Modeling Patterns
As shown in Figure 55, the platform configuration model consists of several layers reflecting the
architectural layers of the platform. Each configuration model layer defines the decisions to be made,
typically either a) using basic IVML types b) refined compound types if the alternatives have detailing
properties or c) a more detailed structure of own types to model service and app decisions. This section
dives a bit deeper into the IVML platform configuration model.

Figure 59: IVML model pattern for simple alternatives without detailing properties.

Figure 59 shows the IVML model pattern to represent simple alternatives that do not need to be
detailed further, e.g., the transport layer serializer format. The lower box in Figure 59 illustrates the
model layer, the upper box the specific platform configuration. The alternatives are modeled (in the
lower box) as the enumeration type X listing all potential alternatives. The declaring model layer also
defines a variable representing the respective decision and assigns a default value to ease creating
a configuration. The configuration (upper box) overwrites the value to indicate that a different
alternative shall actually be included into the platform instance. It is important to note that this pattern
does not allow for openness as IVML enums are fixed and cannot be extended later, e.g. in importing
IVML modules.

Figure 60: IVML model pattern for alternatives with detailing properties.

Many alternatives demand further information when selected, e.g., the transport protocol, the S3
storage client/server or the AAS client/server settings. In this case, we model alternatives as IVML
compounds, an abstract base compound defining a common type for all alternatives and refining
compounds for the individual alternatives. The base type, in Figure 60 the compound X, defines
properties that are common for all alternatives, e.g., a server port, usually with default values, while
the individual alternatives such as Alternative1 may add further properties. Each type representing
a specific alternative can define constraints that become active only if that specific alternative/type is
used. The alternatives may override the default values by re-declaring the properties with the same

enum X {Alternative1, Alternative2, …};

X decision = X::Alternative1;

decision = X::Alternative2;

abstract compound X {
Type p = default;

}

compound Alternative1 refines X {
//optional further properties, constraints

}

// further alternatives, constraints

X decision = Alternative1 {
p = default1
// assign further properties

};

decision = Alternative2 {
// assign properties as needed

};

IIP-Ecosphere Platform Handbook
141

name/type. As in the first pattern, the declaring model layer defines a variable representing the
respective decision, assigns a default instance of Alternative1 including specific values for the
properties. The configuration in the upper box may then assign a more specific value, here
Alternative1 and properties. Please note that property values can be derived from, e.g., common
global variables to increase consistency. Moreover, modeling alternatives via compound refinements
allows for openness, as further refining alternatives can be defined on any upstream model level, i.e.,
this IVML model pattern is appropriate for alternative components and plugins contributed by the
user. This form of openness must be adequately taken into account in the instantiation process.

In several situations, the configuration model must remain open for extensions by the user or by third
parties (supporting the idea of a service store in [41]). Typical extensions are service or application
definitions as well as device types (acting as templates for device-specific container instantiations).
Akin to the configuration model, also the instantiation process must be extensible, e.g., to perform
service-specific generations when an externally provided generic service shall be integrated. The EASy-
Producer languages IVML, VIL and VTL offer mechanisms to support such requirements. One basic
mechanism is dynamic dispatch operations, for user-defined constraints as well as for generation
functions. In dynamic dispatch, the actual operation to be executed is dynamically determined based
on the actual types of all parameters (an extension of first-parameter polymorphic execution in object-
oriented programming languages like Java) [14]. Basically, dynamic dispatch allows to consider later
extensions of the actual model by refinement and, thus, provides a basic form of openness to refined,
but yet unknown types. A second mechanism allows for a dynamic model structure through wildcard
imports (similar to wildcard imports in Java), i.e., model parts that are not known at modeling time can
dynamically be added to the model structure. However, imports just make model elements known to
other model elements and do not influence the dynamic dispatch mechanism. Thus, the EASy-Producer
languages provide a special import statement, that allows to extend the dynamic dispatch in the model
at hand by dynamically loaded models. In essence, externally provided model parts are dynamically
loaded into the model structure and can hook themselves into the constraint and generation operation
through specialized types defined in these models.

Figure 61: Model structure for openness and extensibility.

For the aforementioned situations, this requires a specific model import structure as shown in Figure
61. Let X be the part of the model for services, applications or devices, e.g., X could be “Devices”. To
enable the kind of openness as explained above, one model module must define the basic types and
operations the dynamic extensions shall hook into (module XBase, for the devices example the name
would be DevicesBase). The extensions are modules that import the base module and add own types
and operations. Their names are a composed from the respective model part, i.e., X, the infix “Part”
and the individual name of the extension, e.g., DevicePartPhoenixContact109 for specific device
types representing the AXC PLC/edge series of Phoenix Contact. Finally, some modules must use the
extensions. Such a module must be an extension of the XBase and dynamically import the XPartY in
a way that they hook into the dynamic dispatch of X (and transitively extend XBase). In the IIP-
Ecosphere model, this is the module X, in the example called “Devices”, which usually is empty except
for imports and the model extension statement. This module is then imported by further modules of

109 Depending on the naming, the prefix may be adjusted deliberately for a more “speaking” name.

XPartY

XBase

X XPartYXPartY*

142
IIP-Ecosphere Platform Handbook

the configuration model and implicitly introduces the dynamic extensions. At runtime, further
extensions can be added, but currently only by re-loading the entire model.

Figure 62: Meta-model concepts for defining services and alternatives.

The configuration of user-defined applications that are executed on top of the platform, the involved
services, their data paths and the resources to execute the services on requires more information and,
thus, is more complex than the two IVML model patterns discussed before. The most relevant
configuration concepts for applications are illustrated in terms of the UML-like class diagram in Figure
62. We target the following aims:

1. Configure re-usable services (the Services module in Figure 62) and their properties,
potentially families of semantically equivalent services that can be exchanged at runtime, e.g.,
alternative AI services. Services include those provided and integrated into the platform as
well as user-supplied services.

2. Represent data transformation and mappings to reduce the effort of manual coding in
standard situations (in the sense of “low code”, R19f). Currently, we apply such data
transformations in particular to integrate (machine) connectors. Figure 63 illustrates the
applied data mapping approach. For a connector we specify a machine- and a platform-side
I/O data format, usually a record of named/typed fields. Fields with same (nested) field names
are mapped onto each other in both directions, machine-to-platform and platform-to-
machine. Fields that cannot be mapped are either ignored, i.e., projected out, or left
uninitialized. To fill individual fields, assignment expressions between both sides can be stated,
allowing for simple data transformations, e.g., unit calculations. For a model connector (cf.
Section 3.6.3), the given data formats can be turned by the generator into model paths and
data can be obtained and transformed automatically. For a channel connector (cf. Section
3.6.3), the input is always binary. Here, the input parsers from the Connectors component can
be specified in the model to turn the data into named/indexed fields that are mapped by
default to the machine formats and, thus, can further be used as for the model connectors. In
the opposite direction, output formatters can be applied. If no platform-supplied
parsers/formatters fit to the data at hands, own Java components supplied as Maven

ServiceFamily

ServiceBase
IOType

Type

*

MetaConcepts

Services

JavaService PythonService

Service

Connector

* in
* out

ServiceMesh

Application

DataTypes

RecordTypePrimitiveType Field
*

members

Devices
EcsResource req, alloc

Applications

MeshSource MeshProcessor MeshSink

MeshInnerElement

MeshElementMeshConnector

CFamilyCDataComponentCDataProperty

CComponentCResource req, alloc

* in
* out

* *

1

output input, output input

Legend
Inheritance
Reference
Refined Reference
Propagating Reference

CConnector*

IIP-Ecosphere Platform Handbook
143

component can be specified. Similarly, the entire mapping process can be bypassed by own
serializers or model adapters.

Figure 63: Overview of low-code data mapping for connectors.

3. Configure physical and logical compute resources the services are executed on (the Devices

module in Figure 62), although it is important to emphasize that configuration instances of
such resources shall be created and reflected into the configuration by the device
management at runtime.

4. Compose connectors and services to applications (the Applications module in Figure 62)
so that one service can occur in multiple applications and that the data paths within an
application are defined and can be instantiated automatically.

In more details, the most basic module in Figure 62 is MetaConcepts. Although concepts and
properties defined in this module could also be introduced in the dependend modules shown in Figure
62, the aim of MetaConcepts is to represent generic concepts of configurable runtime-adaptable
systems. Thus, MetaConcepts introduces basic notions of resesources (CResource), components
(CComponent), families of components (CFamily) and connectors among components
(CConnector). As these concepts define properties using these types (and the connectors even of the
top-most IVML type Any, therefore no associations in Figure 62), which must be re-defined in upstream
modules, e.g., in the Services module.

From the generic MetaConcepts perspective, we now turn to the IIP-Ecosphere specific configuration
concepts. The Services module currently just introduces the notion of a device, where additional
properties will be added in the future. The DataTypes module introduces the ability to express types
that are reflected in current programming languages, such as “primitive” types like String or Integer,
but also more complex, composed types (called RecordType). These types are used in the Services
module to specify the inputs and outputs of individual services. In this module, specific service types
(Connector for the connectors in Section 3.6.3, JavaService for services implemented in Java and
PythonService for services implemented in Python) are defined and also service implementations
shipped with the platform (AAS, OPC UA and MQTT connectors from Section 3.6.3) are defined as
configuration instances. Akin to MetaConcepts a refined type for user-defined service families that
can act on behalf of a fixed, individual service is introduced.

On top of these configuration layers, the Applications module defines graphs of services, called
service meshes. An Application consists of one or multiple ServiceMesh instances, and, in turn, a
service mesh starts at one or multiple sources (of type MeshSource). Sources are linked via
MeshConnector instances to processor or, ultimately, sink nodes. In contrast to the IVML model used
in the FP7 QualiMaster project [14], we cannot restrict inner nodes to processors and sinks, as
processors may have backward flows to control machines via connectors.

Model Connector
(Virtual)

I/O Format
‘Machine’ Platform

I/O Format Services

Parser/Formatter byte[]

Channel Connector

Auto-Mapping, Mapping Functions

144
IIP-Ecosphere Platform Handbook

Figure 64: Instance view on an IIP-Ecosphere platform application.

As illustration of these concepts, Figure 64 shows how instances of the aforementioned types can be
linked together (backward flows are not shown in Figure 64). The Application consists of one
ServiceMesh, which, in turn, consists of a chain of three services, a source, a processor and a sink,
all linked by instances of MeshConnector. The source is implemented by an OPC UA connector, the
processor by some Python implementation, e.g., an AI algorithm, the sink by some Java
implementation, e.g., a database. Each of these services has its own input/output types, which must
comply with the predecessor/successor services along the graph constituted by the service mesh.
Further, each service is (at latest at startup time of the application) deployed to a certain resource,
e.g., an edge device. To determine adequate resource candidates, currently descriptions of resource
requirements and software dependencies to be installed into hosting containers are developed.

Figure 65: Structure of the IVML configuration meta-model for IIP-Ecosphere (transitive dependencies omitted).

6.2 Configuration Model Structure
The structure of the configuration meta-model (Figure 65) follows the overall structure of the IIP-
Ecosphere platform architecture with some additions and a different layering/dependency approach

:MeshSource :MeshProcessor:MeshConnector :MeshSink

:OpcUaConnector :PythonService :JavaService

:MeshConnector* * * *

:ServiceMesh

*

:Application

*

:EcsResource :EcsResource :EcsResource

:IOType :IOType :IOType ***

ResourceReq
SW Dependencies

ResourceReq
SW Dependencies

ResourceReq
SW Dependencies

Legend
Application references
Mesh references
Service references
Propagated service information
Descriptions to be added
To be determined by dynamic deployment, can be set manually for testing

IIPEcosphere

UI

Applications*

Connectors

DataTypes

Nameplate*

MetaConcepts

Transport

Services*

AASDevices* Resources

IIP-Ecosphere Platform Handbook
145

due to pragmatic reasons. The individual modules define the configurable properties and types for the
respective architecture layer, component or aspect. The bottommost module MetaConcepts stems
from an attempt to capture the basics of an adaptive software system and is included here for
evaluation purposes. The DataType module defines primitive and extensible data types used for
specifying input/output types of services and connectors. On the next level, AAS
server/implementation properties, AAS Nameplates with default instances for IIP-Ecosphere,
Devices including capabilities and requirements, and Resources (including resource management
and monitoring) are defined. Then, the actual transport protocol and its setup (including
authentication and transport layer security) are specified. Services (including Java, Python services),
reuse all these configuration types and form a basis for the more specific Connectors. Applications
and their service meshes are defined on top, imported by UI (settings) and finally the top-level
IIPEcosphere module for global technical installation settings such as installation paths. Module
names suffixed with a * are extensible through the import mechanism explained in Section 6.1.

An actual copy of the meta-model is included in each implementation/example project after
downloading the model through Maven. In these projects, the actual configuration is typically defined
in one or two modules to focus on the specific properties of the example and to ease gaining an
overview.

When the platform takes over control of its own model, fixed structures are needed so that the
configuration component can store the configured settings, service instances and application meshes.
This form of models is currently in testing and will be enabled as soon as the management user
interface provides respective editor functionality, in particular a graph-based service mesh editor
based on the information provided by the configuration AAS. The model structure required then is
depicted in Figure 64.

In this setup, the topmost module is the PlatformConfiguration storing settings that override
global non-frozen configuration options. Service instances are stored in AllServices, related type
definitions for input/output specifications in AllTypes. In turn, AllTypes relies on AllConstants,
containing e.g. server host names or commonly used port numbers. The application instances
(ApplicationPartX) are stored in individual extensions pointing to their linked service mesh parts
(ServiceMeshPartX). The top-level meta-model module IIPEcosphere and transitively imported
modules are linked through AllConstants into the managed configuration model. Further,
TechnicalSetup defines the fundamental technical abilities of the platform, e.g., transport protocol,
monitoring or management UI setup. In turn, TechnicalSetup may rely on the constants in
AllConstants.

Figure 66: Managed model structure.

6.3 Support for Standardized Connectors/Protocols
Defining the input/output data types for complex, nested data structures can be a complex process.
For standardized protocols/information models such as OPC UA or AAS, more and more data structures

PlatformConfiguration

AllServices

AllTypes

ApplicationPartX

ServiceMeshPartX

IIPEcosphere

…

*

*

AllConstants

TechnicalSetup

146
IIP-Ecosphere Platform Handbook

with standardized fields and semantics are created. For a standard-based platform like the IIP-
Ecosphere platform it is important to take up such approaches and to ease the use of standardized
data structures, thus, supporting the platform user in creating applications.

As an example, we turn now to the OPC UA Companion Specifications, a set of standardized models
for OPC UA. Currently, more than 50 such models have been specified and further models are in
preparation. Over time, also the defined model structures are evolving. Thus, manually translating OPC
UA Companion Specifications could be an initial approach, which will not turn out to be sustainable.
Fortunately, the OPC Companion Specifications are available in a machine-readable XML format, which
can automatically be translated into IVML [10] and then used further in application configurations. We
demonstrate this approach by an automated model translator [5].

The model translator reads an OPC Companion Specification XML file and translates it into IVML using
a base meta-model, which extends the IIP-Ecosphere configuration meta-model, in particular the
DataTypes module. The created IVML files, one per companion spec can be imported into an own
application model when needed. Besides the main types representing a Companion Specification, also
declared subtypes can be used in custom applications, in particular as input/output to generated OPC
connectors.

The approach was successfully validated with all 55 available OPC UA companion specs. Valid IVML
models were produced for all companion specs and valid connector code was generated. The largest
specs, e.g., the Tobacco Machine Communication (TMC)110 or the IEC61850-7-4 spec triggered a
restructuring of the generated connector code to cope with the more than 120 KLOC XML specification.
As far as available in the VDW UMATI OPC test server, 3 of the generated connectors were successfully
functionally validated against an OPC reference implementation [5].

6.4 Platform Instantiation Process
After successfully configuring a platform and the apps to run on the platform, the configuration must
be instantiated. This happens through further languages of EASy-Producer [15], namely the Variability
Instantiation Language (VIL) to express the control over the instantiation process and the Variability
Template Language (VTL) to modify or create artifacts of a certain type, e.g., XML or Java code files.

Figure 67 illustrates the steps that are executed during the instantiation. The IIP-Ecosphere VIL model
defined thee major entry points, which are available through the PlatformInstantiator tool,
namely

• generateInterfaces generates the interfaces of the declared applications as a basis for
the realization of user-defined (non-platform provided) services as well as default basic
implementations of the service interfaces, e.g., to ease the implementation of parameters and
data ingestors.

• generateAppsNoDeps instantiats the applications but intentionally leaves out all
implementation dependencies. In addition to generateInterfaces, this provides also
access to implementing base classes. However, the user-defined service implementations
(whether they already exist or not) are not considered during the instantiation process.

• generateApps for the instantiation of (currently) all defined apps for a platform including all
required dependencies. The resulting service artifacts are packaged to be executable, although
of course bugs and errors may be located in the application logic.

• generateBroker generates an example broker/service instance the configured transport
protocol. Typically, we rely on the broker implementations that we use during regression

110 https://reference.opcfoundation.org/TMC/v200/docs/8.1

https://reference.opcfoundation.org/TMC/v200/docs/8.1

IIP-Ecosphere Platform Handbook
147

testing. These instances may not be intended for production code, but they are helpful for the
first setup or for examples.

• generatePlatform for the instantiation of the platform components
• main (not shown in Figure 67) which executes all aforementioned entry points, in particular

for testing.

One could generate the interfaces for applications in one step with the application code and packaged
as part of the same artifact, e.g., using different Maven classifiers. Although this approach is easier to
realize, it hinders service reuse and may cause cyclic builds as it seems that Maven does not separate
between dependencies of the main and classified artifacts. In contrast, we rely on a separation into an
artifact that contains the generated interfaces for all applications defined for a platform and, in
individual Maven artifacts, the service implementations. It is important to mention that the service
implementations can be organized along applications, but, to facilitate reuse, an artifact can also
realize individual services, in extreme a single service. Figure 67 mainly illustrates the separated
instantiation approach.

For the instantiation of the application interfaces, we first iterate over all data types declared in a
platform configuration and create their Java and Python realization (JavaType, PythonType).
Moreover, we create the related serializers based on the declared types, for Java in order to realize
the platform transport wire format (here JSON is just one alternative) and for Python a JSON-String
Serializer to link a Service into the Python Service Environment. For all services in the platform
configuration, we generate the service interfaces (JavaServiceInterface,
PythonServiceInterface) and where feasible a basic implementation for service parameter and
ingestor handling (JavaServiceBaseImpl)111. Please note that, as discussed in Section 3.7.3, Java
and Python Service Environments are similar, but also differ in the required level of programming,
which is reflected in the different instantiation steps. Thus, Java services require a more complex code
generation due to the direct integration into the service execution engine than Python services that
are “just” executed by the Python Service Environment, which, in turn, is integrated through Java code
into the service execution. At the end of the creation of the application interfaces, we create a Maven
assembly descriptor for the Python interfaces, a Maven build specification that creates the deployable
artifacts as well as an Ant script to execute the deployment in the continuous integration.

For obtaining the applications (integrating the handcrafted service code), we iterate over all
application specifications and all their declared service meshes. Here, we create the code to bind the
respective service into Spring Cloud Stream (JavaSpringCloudStreamMeshElement) and for
further integrations a stub class based on the service interface to transparently integrate non-Java
implementations into the mesh. Depending on the actual service, also further artifacts and assembly
descriptors may be generated, e.g., as shown in Figure 67 for KIPROTECT KODEX. Furthermore, for
each app, the deployment descriptors (if specified in the configuration), a starter class (for registering
the mesh elements to the service framework and for registering the serializers), and the Maven POM
file (AppMvn) are created. The POM file is executed, ultimately creating several artifacts, including one
containing the programming interfaces as well as one representing the application-specific service
artifact (including dependencies, service code etc.). For deploying the artifacts to Maven in our
continuous integration environment, also an ANT file is created.

111 To allow for service implementations that are not based on the basic implementation, the default values of
the service parameters are set after the instantiation of the service through the reconfiguration operation, i.e.,
the parameter values are not available during the execution of a constructors but shortly after, usually when
the first data arrives for processing.

148
IIP-Ecosphere Platform Handbook

Figure 67: Overview of the platform instantiation process.

On platform level, the instantiation process creates packaged artifacts containing the ECS-Runtime,
the service manager, a combined version of ECS-Runtime and service manager as well as the central
platform services. For each of these components, first the application setup file (yaml) and a test class
to validate the Yaml file are created. Then the logging configuration, the selected JSL service
descriptors and ultimately a Maven POM with the respective components selected in the platform
configuration are created. The Maven POM is executed, ultimately creating the respective artifact,
more precisely, folders containing all required dependencies. Moreover, for starting the components,

IIPEcosphere.vil

generatePlatform ecsRuntime

serviceMgr

ecsServiceMgr

platform

yaml yamlTest

JavaLogbackXml

JavaServices

Mvn Mvn

OsScripts (Win, Linux)

…

…

…

generateApps

PythonType (interface, impl)

PythonJsonSerializer

Apps Mesh elements and record types (old style)* *

Elements
of mesh

JavaServiceInterface

JavaStubStub

JavaSpringCloudStreamMeshElement

JavaSpringCloudStreamStarter

AppMvn

AppAnt

Mvn

For CI

Spring Cloud Stream only
for now

Entry point for
install, tests

Entry points for
app with/without

dependencies only.

Legend
VIL entry rule
VIL
VIL built-in
VTL
VTL per componenty

y

y

y

y

Record types* JavaType (interface, impl)

JavaJsonSerializer (interface, impl)
Transport JSON

only for now

Integration JSON

JavaServiceBaseImpl

PythonServiceInterface

*

JavaSpringCloudStreamYaml

JavaSpringCloudDeploymentDescriptor

JavaLogBackXml

PythonMeshElementInterface

PythonAssembly

AppMvn Mvn

AppAnt For CI

KodexActions

KodexApi

KodexData

KodexArtifactsAssembly

Service types*

JavaMeshElementInterface

JavaMeshElementStub

JavaConnector

JavaConnectorSerializer

DataOperationBasics

Broker (AMPQ, MQTTI

docker

Management Ui

Mvn

OsScripts (Win, Linux)

Conf

Mvn

generateBroker

Dockerfile
WrapperScript

UiAgularConfig

UiAgularPom Mvn

monitoring …

IIP-Ecosphere Platform Handbook
149

operating-system specific scripts for Windows and Linux (here also descriptors for automatically
starting the components as operating system services) are created. Similarly, the configured transport
protocol leads to the instantiation of a corresponding (test) broker, which is also an important
prerequisite to generically run examples from an IVML configuration. Further, Docker containers are
instantiated based on service, dependency and installation information as well as the
download/instantiation of the platform management UI is performed.

The code and artifact instantiation for Spring Cloud Stream currently applies a special strategy for
connecting services. This strategy stems from practical experiences, where asynchronous data
connections between services did not (always) work out as expected. Already reported Spring Cloud
Stream problems may be the root cause here, but we were not able to identify the problem. Thus, we
currently route almost all asynchronous connections directly via the transport layer. If we would fully
rely on Spring Cloud Stream, a binder plugin would transparently do this for us, which failed in some
cases. One particular exception are connections from asynchronous services to synchronous services,
which cannot be realized without Spring Cloud Stream mechanisms. We plan to revert to Spring Cloud
Stream based on more regression and use case tests in the future.

Specific services such as KODEX, RTSA or the upcoming Flower-based federated learning integration
are extensions to the configuration model and the code generation and are represented in their own
modules that are dynamically loaded into the platform configuration/code generation.

6.5 Container Instantiation
Virtualization of platform or application functionality intertwines technical requirements with
convenience/ease-of-use. On the one side, several kinds of devices, in particular edge devices, do not
allow for extensive software installation outside their own ecosystem. In such environments,
Java/Python in general or required versions of these languages or their libraries in particular may not
be available and an installation may not be permissible. Due to the trend of virtualization in IIoT, in
particular for edge devices, but also due to the availability of Docker and reasonable CPU and memory
capacities (sometimes even GPU or TPU processors), virtualization becomes a mandatory functionality
for the IIP-Ecosphere platform (see also [13]). On the other side, complex services require non-trivial
dependencies, which, in particular for Python, typically requires a physical installation of the required
packages, which, in turn, depending on the underlying operating system or Linux distribution, may
demand the installation of native libraries, the execution of operating system installation procedures
or C code compilers. Such operations may not be permitted on a target system, but, more importantly,
separating specific dependencies among different (versions) of applications or uninstalling/cleaning up
such dependencies without virtualization capabilities may end in a nightmare.

Creating adequate containers for an IIoT application requires technical knowledge and, dependent on
the actual (performance) goals, may involve non-trivial tradeoff decisions, e.g., pre-installed vs.
dynamically installed dependencies or regarding the layering of the target containers, in other words,
what to do first while creating the container in order to maximize with respect to desired system
properties (transfer time, upgradability, adaptability). For this purpose, the IIP-Ecosphere platform
aims at automatically creating the required containers based on a set of basic container creation
strategies. As ideally no human is involved in this process, this allows for application and device specific
containers (e.g., vendor builds of certain libraries) instead of one-size-fits-it-all containers as often
created in other/industrial approaches, typically for virtualizations in cloud settings where certain
resources do not matter so much [11, 12].

Container instantiation is the process of creating container images that include an application with all
the dependencies that it needs to run an application at hands. We primarily focus on the Docker

150
IIP-Ecosphere Platform Handbook

container technology (mentioned but not required in [13]), but allow for extension by other
approaches, e.g., LXC. Container instantiation happens during the platform instantiation.

The instantiation process is enabled when the configuration model for an application sets the variable
createContainer to true. Then, based on the technical setup of ContainerType in the
configuration model, three different types of container images are created. Successfully created
container images are stored in the respective container registry as defined in the configuration model.
The registry could be a public registry such as DockerHub, but in particular also private, locally installed
registries are supported in order to allow for applications that are based on licensed or IPR protected
components.

Currently, as discussed in more details in [40], the platform supports the automated creation of three
types of container images instantiation (based on the configured value for ContainerType). The
container types are illustrated in Figure 68. These types are

1. Ecs_Svc_App to create a container that contains an ECS runtime and a service manager
running as separate processes. The container contains the dependencies of all services for the
configured application(s) as well as a local communication broker to facilitate local transport-
layer data communication among application services.

2. EcsSvc_App to create a container that will have an ECS-runtime and a service manager
running as one single process. Although it is advisable to run these two central services as own
processes to increase resilience, a single process allows for saving memory resources. As for
Ecs_Svc_App, the container includes the dependencies of all services for the configured
application(s) as well as a local communication broker to facilitate local transport-layer data
communication among application services.

3. C1Ecs_C2Svc_App to create two separate containers: one container will have an ECS-
runtime and the second container will have a service manager, the application dependencies
and a local broker for local transport-level communication among services.

Figure 68: Container types and contained services/parts as supported by the IIP-Ecosphere platform.

After creating the images and pushing them to the registry, a descriptor for each Docker image is
created specifying properties of the container image. Besides descriptive characteristics of the
container, the descriptor in particular contains the container startup options (environment variables,
exposed network ports, utilized volumes, Docker-out-of-Docker settings for the Ecs or the
C1Ecs_C2Svc_App container type) and the location from where to obtain the container, e.g., an
image name pointing to the local container registry. These descriptors are stored in the artifacts folder

IIP-Ecosphere Platform Handbook
151

of the platform as specified in the configuration model and can be obtained by the management user
interface (to display the available containers), but in particular by the container manager installed on
a device (e.g., Ecs container type) in order to obtain an application/service container on demand and
to start using the startup parameters specified in the container descriptor.

6.6 Example Applications
For diving into the platform concepts and operations from a practical perspective, examples are
desirable. One source for such examples are the configuration model regression tests, which contains
two simple applications (SimpleMesh and SimpleMesh3) as well as a more complex example
(RoutingTest). However, due to their very nature, these test cases are rather artificial and use a
single implementation project for the realization of their services to ease the overall build process.
While this is acceptable for regression tests, it may not be an adequate starting point to better
understand the IIP-Ecosphere platform.

To make the platform accessible and understandable, we started to collect some examples that can be
published without breaking IPR. On the one side, this set of examples is still small and in development
(to cope with unavoidable platform changes). We aim at providing more examples and accompanying
explanation (such as slides or videos) in the future. On the other side, the platform example set is one
extension point, where you can easily hook into and contribute own examples (also discussing
alternative approaches, e.g., to code organization).

It is important to mention that the examples are meant to be created/completed by the platform
instantiation. In other words, when you import and open one of the examples the first time in an
Integrated Development Environment or just by executing Maven, you may run into compile errors
or missing dependencies. These are (usually) not bugs, rather than parts that were intentionally not
committed and that must be created using the platform instantiation process, i.e., some of the
command interaction points of the PlatformInstantiator.

We briefly summarize the individual examples below. The examples can be obtained from GitHub112.
Each example includes a README.md file with more detailed explanations. Typically, a Linux build script
is included, which is used for regression testing of the platform. The example set consists of

• examples.python: This example focuses on the integration of an asynchronous service realized
in Python (through the Python service environment) and demonstrates the integration with
accompanying Java services (a simple data source as well as a simple asynchronous data sink).
Please recall, the Python service implementations must be based on (generated) platform
interfaces, located in a specific module (services) and packaged into an own Maven artifact
(type “python”) to become available to the platform instantiation. Similarly, the Java services
for sources and sinks must realize respective interfaces and be packaged. However, as in the
VDW example, neither the actual configuration meta-model nor the required interfaces are
available after download but must be obtained/created through instantiation steps. As the
services are linked in a stream-based manner, also a broker must be available. For this purpose,
using the command (mvn -U install) you obtain the configuration meta-model,
instantiate the broker based on the example configuration, create the application interfaces
and basic implementation, compile the example, and finally integrate the service code in the
example with the app. The application can be executed through a running platform, but also
standalone, which requires a specific setup that is included in the example.

112 https://github.com/iip-ecosphere/platform/tree/main/platform/examples

https://github.com/iip-ecosphere/platform/tree/main/platform/examples

152
IIP-Ecosphere Platform Handbook

• examples.pythonSync: This example follows the same setup as examples.python, but
integrates the Python service code into a synchronous service passing its data on to a
synchronous sink. The remaining properties of the example are the same.

• examples.rtsa: This example shows how to utilize the RapidMiner RTSA as service in an IIP-
Ecosphere platform application. Regarding the setup, the example is rather similar to
examples.python, except for the use of RTSA instead of a manually implemented Python
service. One specific aspect is that RTSA is commercial software and not included in the
example. As alternative, we use our simple FakeRTSA from the regression tests. As above,
using the command (mvn -U install) you obtain the configuration meta-model,
instantiate the broker based on the example configuration, create the application interfaces
and basic implementation, compile the example, and finally integrate the service code in the
example with the app. The application can be executed through a running platform, but also
standalone, which requires a specific setup that is included in the example.

• examples.KODEX: This example illustrates how to use KIPROTECT Kodex as
anonymization/pseudonymization service in an application. Again, the example is rather
similar to the RTSA and the Python example. One specific aspect is that Kodex is a generic
platform-provided service that is customized for the use in your application based on the
application configuration, e.g., what data to anonymize. A further aspect is that this example
integrates an in-memory database as data sink. The build steps are the same, i.e., using the
command (mvn -U install). Also this application can be executed through a running
platform, but also standalone, which requires a specific setup that is included in the example.

• examples.template: This example contains the configuration model and the service
implementation used as blueprint for the service development workshop in November 2022
and for the service development tutorial videos6. The example structurally is similar to
examples.python and can be built in the same manner (mvn -U install).

• examples.hm22: For the Hannover Messe 2022 (HM’22) and, in an improved version, for the
Tage der Digitalen Technologie in Berlin (TddT’22) the IIP-Ecosphere project team developed
a demonstrator application that involves IoT/Factory hardware, the IIP-Ecosphere platform as
well as a controlling application. For short, the application demonstrates a visual AI-based
quality inspection process for a configurable lot 1 production, where a robot with mounted
camera takes pictures from three sides of an aluminum car model. A QR code on the indicates
an (external) AAS describing the configuration of the car. The two other pictures are utilized
by a Python-based AI to detect the number of windows, the color of the tires, the presence of
an engraving as well as whether “scratches” were accidentally caused on the surface of the
car. The services, in particular the AI, can be executed in different deployment settings, e.g.,
on a Phoenix Contact AXC 3152 PLC/edge device. For this purpose, the application consists of
two generated connectors (OPC UA to obtain input from the PLC, AAS to request information
on the car configuration), a camera source, the AI (as service family to switch between
alternative AI implementations), the action decider (controlling the overall process) as well as
a customized version of the generic, platform-provided TraceToAAS service. The inspection
results are displayed on an Angular Web Application running on a tablet based on the
information in the application AAS (via the TraceToAAS service). The application involves
forward data flows as described above, but also backward data flows for controlling the
process. Figure 69 illustrates the physical setup, more details on the application and the
lessons learned while creating/integrating the application can be found in [11]. The build
process is similar to the examples described above. The application can be executed
standalone for testing as well as via the platform through deployment plans (examples
included).

IIP-Ecosphere Platform Handbook
153

• examples.VDW: The IIP-Ecosphere partner VDW is prominently involved in standardization
activities for industrial production, in particular in OPC UA through the UMATI initiative. VDW
offers a test server providing model instances according to OPC UA companion specs. As one
of the connectors that is shipped with the IIP-Ecosphere platform is an OPC UA connector, an
example based on that connector may be interesting to the reader. Connectors for the IIP-
Ecosphere platform may be created by hand or, the preferred way, generated from a
configuration model. This example illustrates both, a handcrafted connector as well as the
integration of a generated connector into a demonstrating piece of code. It is important to
mention that we do not read out the whole UMATI test server structure, rather than just a
small piece for the OPC UA Woodworking Companion Spec113.
The example represents the respective part of the Companion Spec in terms of IVML, imports
the structure into the configuration model, adds some information about caching and server
coordinates and creates a simple application mesh that just consists of a source (the
connector), i.e., no further processing with the obtained information happens here (and some
of the generated artifacts may be unusually empty). For executing this example, using the
command (mvn -U install) you first execute build steps to obtain the actual configuration
meta-model (intentionally not included), run the application generation and compile the
example.

• examples.templates: This example project displays the usage of out impl.model to create
an application with three services of which one is a python service utilizing AI. It consists of
two parts, the examples.templates.model and the examples.templates.impl. The
model part is based on the impl.model and contains the configuration .ivml files, with
the use of mvn generate-sources we can generate templates fitting these configuration
files. The examples.templates.impl is created by importing the resulting .zip file in the
gen directory of the exmples.templates.model project, it contains the implementation of
the concrete service functionality. The services implemented in this project are made available
to the examples.templates.model project by running mvn install in the .impl
project. The application is completely build by then running mvn install in the .model part
of the project. The result is an application that takes the data from the resource directory and
evaluates it utilizing a python service with a pre-trained random forest classifier.

Figure 69: Using the IIP-Ecosphere platform to realize a robot-based visual quality inspection for Hannover Fair 2022.

113 Woodworking is not really related to the aims of IIP-Ecosphere, but it was the first one that we identified as
potential candidate in the UMATI test server and that was reasonable large but also not too large to be turned
into an IVML model (automated work in this direction is planned for the next release).

154
IIP-Ecosphere Platform Handbook

6.7 Creating an Application
Due to the configuration and instantiation process, the (manual) creation of an application for the
platform is not just a matter of some programming tasks. In this section, we summarize and detail the
steps, which in future versions shall be better supported by respective platform tooling. For this
version, you shall be able to realize code in Java or Python (depending on the configuration that you
will create) as well as get to know how to work with Maven. More details on project structures or
default build sequences will be presented in the next sections.

Figure 70, summarizes all steps that are necessary to create an application consisting of Java services.
We assume that you use example.python or example.rtsa as blueprint. While Figure 70 is meant
to provide an overview, we briefly discuss now the individual steps (assuming that you have a most
recent version of the platform sources from GitHub in your local workspace). For more details, please
follow our tutorial videos on service implementation6.

1) Download the template project impl.model from GitHub114. impl.model contains a setup
for the configuration and code generation. You may rename the projects as you desire. Akin,
you may rename the maven artifact name in the respective pom.xml file. We will continue
referring to the project as impl.model.

2) In impl.model you need to adjust the .ivml files in /src/test/easy to fit your needs i.e.
adding or changing datatypes, for this you can refer to our example projects as a guidance i.e.
src/test/easy in examples.rtsa or examples.python, the install package or
SimpleMesh and SimpleMesh3. If you plan to have multiple examples/configurations on the
same machine, please consider changing the Maven artifact name in the variable
sharedArtifact in TechnicalSetup.ivml so that each project can be based on
individual interface artifacts. Make sure your pom.xml does contain the properties
<iip.model> with the value PlatformConfiguration as well as <iip.resources> with
the value resources. Afterwards execute mvn -U generate-sources to obtain an actual
copy of the IIP-Ecosphere configuration meta-model and create the /gen/py/ directory
containing ApplicationInterfaces, the application itself and a template directory with
the .zip to implement the services. The ApplicationInterfaces are needed for the
service creation and will be added to your maven repository. To utilize the templates, you we
recommend importing them as a separate project right besides your impl.model project.
The template project will contain template Java service sources, a matching Java jUnit test
suite, template Python service sources, tests and a Python Eclipse editor setup file for PyDev,
if configured, template mocking test input files, and an initial YAML-based identity store file.

3) Import the generated implementation template into your Eclipse (we refer to it as project
impl.impl). Depending on the services stated in your model, now the services must be
implemented in terms of Java or Python code, respectively. Please consider in particular
architectural constraint C7 stating that generated code must not be altered. When the services
are ready, compiled and tested, execute mvn install so that the artifacts of impl.impl
are installed and become available. Also implement the unit tests for the services and validate
your implementation. For later steps, adjust the mocking input JSON files in
src/test/resources.

4) After successfully running mvn install in the template project, you can go back to your
impl.model project and run mvn install there, make sure that the values for artifact in your
.ivml configuration are correct and point to the location of the services form the template
project. You can check this by looking at the POM.xml of the template model and reading the
groupId as well as artifactId.

114 https://github.com/iip-ecosphere/platform/tree/main/platform/tools

https://github.com/iip-ecosphere/platform/tree/main/platform/tools

IIP-Ecosphere Platform Handbook
155

5) Step 5 generates the full application artifact for Spring Cloud Stream. We recommend to
execute generated Spring Cloud Stream test cases (documented in README.md of
impl.model) for each individual service first. Then, you may execute the application on your
local machine (as documented in README.md of impl.model) and finally on the platform (see
also Sections 3.13 and 8.4).

Figure 70: Steps to manually define services and create an application.

6.8 Project Structures
Due to the Maven build process and the generation of code during the instantiation, the service
implementation creates/assumes a certain project structure that we will introduce in this section. As
creating structures across multiple programming languages may be challenging, we also offer
generated template projects for configured applications/services as we will discuss at the end of this
section.

Figure 70 illustrates the overall structure of an all-in-one implementation project as we use it for most
of the platform examples. On top-level, it consists of three folders, one folder for the generated code
(gen), one folder for the own sources (src) relying on the generated code, the target folder
containing the created/compiled binaries and the Maven build specification (pom.xml). There may be
further files, e.g., for the integration into a CI environment.

156
IIP-Ecosphere Platform Handbook

Figure 71: Overall structure of an implementation project.

Initially, the gen folder may not exist as it is created and filled during the instantiation of the project.
This may lead to the effect that after an initial checkout, (local) dependencies are not in place, i.e.,
your IDE shows errors. After executing the instantiation/code generation and updating your
implementation project, these errors usually disappear. The src folder contains your code based on
the generated code. src/main/assembly contains project-specific Maven packaging scripts, e.g., for
Python. These scripts must be called from the main pom.xml of the project. src/main/easy contains
the platform configuration (meta-)model, which is downloaded as part of the build process.
src/main/java contains production Java code, similarly src/main/python (may not exist if your
services do not need python scripts). Similarly, the src/test tree contains testing code, e.g., for Java
or Python. Moreover, as a “heritage” from the first examples, the src/test/easy folder currently
contains the configuration model of your application (based on the model in src/main/easy).

Figure 72: Detailed structure of the generated application interfaces.

After the first instantiation run, the gen folder consists of three sub-folders and a template POM file.
The ApplicationInterfaces folder (if the name was not changed in the configuration model)

/
gen

name
ApplicationInterfaces

src
target

pom.xml
AppName

src
target

pom.xml

src

target
pom.xml

impl.AppName.zip

main

easy
java
python

test
easy
java
python

assembly

templates
eclipse

impl.AppName

ApplicationInterfaces
src

main
assembly
java

python

iip
datatypes
impl
interfaces
serializers

datatypes
iip
interfaces
serializers

pom.xml
target

IIP-Ecosphere Platform Handbook
157

contains the data type interfaces, the data type serializers and the service interfaces for all applications
of a platform installation. The second folder, which is named based on the respective application
configuration in the model, contains the service integration into the service execution engine and
service engine specific testing code, which relies on the ApplicationInterfaces, but also on your
code. Thus, besides downloading the configuration (meta)-model, the build process consists of
creating/deploying the sources in the ApplicationInterfaces folder, the compilation of your code
based on ApplicationInterfaces and the generation of the second folder with the service
integrations, which leads to the packaged application. The typical structure, which is rather similar to
the overall project structure, is shown in Figure 72. The difference comes from the generated code and
assembly descriptors and the assumptions about the underlying code structure. On the Java side,
datatypes (representing the application data to be passed between connectors and services), the
implementation (impl) of default services as basis for your service implementation, the interfaces
for the services and the wire format serializers (based on the format selected in the configuration
model) are generated. Similarly, on the Python side, datatypes, service interfaces and
serializers are generated. The iip folder contains the Python service environment and is
created/filled during the build process. If Python-based services are configured, respective assembly
descriptors are generated and linked into the generated build process in pom.xml.

Figure 73: Detailed structure of the generated service integrations.

The name of the generated folder for the application depends on the configured application name.
Also this folder represents a typical Maven project structure, here meant to complement the
application interfaces and your implemented code in order to derive and package a full application.
Similar to the application interfaces, assembly descriptors, Java code and, if configured, Python code
is generated. The Java code consists of the nodes representing the integration of individual connectors
or services into the configured service execution environment (by default Spring Cloud Stream). The
stubs contain local parts of remote service implementations via AAS115. The Starter class is the main
class of the application and responsible for serializer and service registration (as an extension of the
respective class in the service environment). The python folder accumulates the generated code from
the ApplicationInterfaces including the Python service environment (both parts

115 The stubs are currently not used and may be removed in a future release.

AppName
src

target

assembly
java

python

iip
nodes
stubs

datatypes
iip
interfaces
serializers

pom.xml

main

Starter.java

services
servicesMock

test

resources
application.yml
deployment.yml
logback.xml

java
iip

nodes

158
IIP-Ecosphere Platform Handbook

downloaded/updated during the build process). The services folder is the default place for Python
service implementations and taken over from your implementation project (similarly the
servicesMock folder, which contains Python service implementations for testing). The resources
folder contains additional files that shall be made available on the classpath, in particular the Spring
application configuration, the IIP-Ecosphere service deployment descriptor and the logging
configuration. The test folder currently contains only a folder for Java sources, here the generated
connector and service tests. The target folder contains the compiled binary and, in particular, the
packaged applications, here in the formats discussed in Section 3.7.3.1.

The third directory contains the application/service implementation templates. This folder contains
one folder per supported IDE (currently only Eclipse) and within that one folder for the template
sources and one ZIP file containing the template sources to simplify the import into Eclipse. The
template project contains a README.md detailing the generated parts and pieces, some top-level
configuration files as well as a src folder for the production code (main) and the tests. Both folders
may contain Java source code, Python source code and resources according to your configured
services.

As mentioned above, most of the provided platform examples follow this structure, in particular to
reduce the number of projects in an IDE. In addition, services may be implemented in two separate
projects, one containing the model and one the service implementation. Templates for such a setup
can be found in the GitHub repository of the platform.

For the future, we envision such a separation allowing the platform to take control over its
configuration model. While it then shall still be possible to access the configuration model for
download, it will not be in the control of the user/developer anymore. It is then a prerequisite that
that the platform offers means to modify the configuration model and to define new/modify existing
applications. For this purpose, the configuration component shall mirror its configuration into the
platform AAS and allow the management UI to access and modify the configuration. Ensuring the
validity of the platform configuration, executing the instantiation process and providing access to
implementation-level artifacts will then be in the responsibility of the platform. First steps in this
direction are already taken in this version: an initial access to the configuration model through the AAS
of the configuration component and the creation of template implementation projects (for Eclipse). A
generated template project contains template files to be extended, completed by the developer,
assuming for now that a respective impl.model project exists. A generated template project for
Eclipse as illustrated in Figure 75 contains in particular a

• README.md explaining the build process and the test steps
• Eclipse specific files, i.e., .project and .classpath
• An initial .gitignore file
• A pom.xml Maven build process file containing the basic dependencies and linking the

generated service/connector test cases.
• Java template source files according to the class names of Java services in the configuration

file also considering the given packages of these class names.
• Python template service source files if Python services are configured. If Python services are

configured, also the python.xml assembly descriptor will be generated and hooked into
pom.xml.

• Test data specification in src/test/resources (to be filled and renamed)
• Initial identity store file in src/main/resources

IIP-Ecosphere Platform Handbook
159

Figure 74: Detailed structure of a generated service implementation template.

6.9 Default Build Sequences
Section 6.7 provided an overview on how to implement applications with the platform, while Section
6.8 introduced usual implementation project structures. To ease the realization of different
applications and their building, we suggest using a set of common build commands across the
application implementation projects. These commands have been mentioned before and are
summarized in this section.

The build process of the IIP-Ecosphere platform relies on Maven, i.e., is specified in Maven build
specifications (pom.xml). The basis of a build specification based on the IIP-Ecosphere platform is the
inclusion of the platform dependencies as parent project, which introduces common dependencies
and their versions as well as common build steps and plugins (which can be refined in own build
specifications if need be).

An application build specification consists of two types of build commands:

1. Build commands related to the configuration model and the (application/service) code
generation provided by the platform instantiation process as discussed in Section 6.2. These
commands involve obtaining the actual version of the configuration (meta-)model
(generate-sources), instantiating the broker (generateBroker), generating interfaces
(generateAppsNoDeps) and generating/integrating the full application (generateApps)

2. Build commands for the application/service code in the actual project, i.e., compiling the code
against the generated application/service interfaces as well as tests of the (mocked) code in
the actual project, usually the implemented services.

These two types involve different dependencies and define different build commands. In particular, it
is important that some of the dependencies are not mixed among the two types as this usually leads
to build errors. This difference is constituted by dependencies to artifacts created by the
application/service instantiation, in particular generateAppsNoDeps. While the application/service
code in the actual project requires the generated interfaces and the testing even the generated

Template project
src

main
assembly

java

python

packages
datatypes

services

pom.xml
target

python.xml

resources
identityStore.yml

test
java
resources

testData-*.json.tmpl

.classpath

.project

.gitignore
README.md

160
IIP-Ecosphere Platform Handbook

services and service tests, the build commands for the configuration model do not require these
dependencies as they are stated in the configuration model. Even worse, if these dependencies are
declared for the build commands for the configuration model, they break the initial build as these
dependencies are not present: These dependencies are created with the first run of
generateAppsNoDeps and they are intentionally not deployed to the platform Maven repositories
as they may contain IPR protected code, licensed components etc.

For this purpose, a typical build file defines two profiles, one profile per type of build commands. In
addition, common dependencies may be defined in the (usual) main part of the Maven build
specification, and, thus, are made available to both profiles. These profiles are:

1. EasyGen: This profile defined the build commands for configuration model and the code
generation (the first type introduced above). As explained above, this profile must not have
any dependencies on the code in the actual project and also not to Maven artifacts generated
by the platform instantiation commands, in particular generateAppsNoDeps. By default, the
commands declared in this profile call the PlatformInstantiator to create the gen folder
and to instantiate the platform or application artifacts within there. For the IIP-Ecosphere
platform examples, the commands are defined in a way that the application configuration
model is in src/test/easy with an example-specific name and the platform configuration
(meta-)model is stored in src/main/easy. The template projects include template build
specification that can be adjusted to the naming/locations of your application/company.

2. App: This profile defines the specific dependencies of the application, in particular those that
must not be declared in EasyGen as explained above (ApplicationInterfaces is usually
a compile-scope dependency, the application specific artifact explained in Section 6.8 a test-
scope dependency). Besides the build process for the project specific code, which typically is
covered by the build steps defined in the platform dependencies, this profile may perform
specific steps, e.g., packaging though artifact descriptors (mentioned in Section 6.8), but also
executions of tests to ease the development (e.g., as in the template build project introduced
in Section 6.8) or an execution of the full application for (mocked) dry runs. Usually, all these
executions include the Maven test-scope and, thus, not only the ApplicationInterfaces,
which are required for compilation, but also the application specific artifact containing the
generated integration into the service execution environments as well as the generated
connector/service tests (the latter also in test-scope).

In many cases it is sufficient to state the specifics of the build process in terms of static values, e.g., the
folder where the application configuration model is located or the name of the IVML configuration
(file). One particular exception is the resources folder. As discussed in Section 6.8, the resources folder
contains files that shall be bundled with the application, including IPR-protected files. Currently, we
follow the approach to define two folders, one with non-IPR content, e.g., a fake implementation of
RapidMiner RTSA and a second folder with IPR content. The non-IPR content folder can be shared, e.g.,
in GitHub, while the IPR-content folder is not uploaded. For a correct instantiation, it is important to
tell the instantiation process which folder to use and there are situations where you need
instantiations for both folders. Thus, the recommended build sequence allows changing the resources
folder from outside Maven, via -Diip.resources="NewFolderName", where NewFolderName is
the name of the actual resources folder.

6.10 Service Realization Rules and Considerations
Realizing an application within the conventions and assumptions of frameworks or an entire platform
is not trivial, in particular if conventions and assumptions are not documented. While we detailed the
architectural constraints for the platform in Section 4 and we will discuss the implementation in

IIP-Ecosphere Platform Handbook
161

Section 8 and frequently asked questions in Section 9, it is worth to think about service implementation
considerations at this point, i.e., after the overview on creating an application in the previous section.

• As stated in Section 3.7.1, a service is a long-running function that may continuously be fed
with data. A service starts when its status is set by the platform to STARTING. The responsibility
of the service is to do then all preparations for starting, e.g., resource allocation, and to set
itself into status RUNNING (or FAILED for good reasons). Akin to the startup, at any point in
time, the platform may request a change to STOPPING, giving the service the opportunity to
stop processing and to release resources gracefully. The responsibility of the service is to go to
STOPPED when the cleanup is done.

• Both, startup and shutdown activities shall only take time as long as absolutely necessary. We
are aware of the fact that some processes take a longer startup time, e.g., Python with
TensorFlow or a complex Java service like RTSA.

• While a service is running, it is kept in memory (to conceptually run forever) by the platform
in order to process data, i.e., it shall be ready to receive data and, depending on its function,
produce output in synchronous or asynchronous manner. In other words, a service may keep
its resources, ML models, etc. in memory. Of course, in particular on resource constrained
devices, it makes sense to keep an eye on the overall memory consumption and to dynamically
allocate/release resources that are not frequently used.

• A service never returns/ingests “the non-existing object”, e.g., null in Java or None in Python.
Synchronous services always return a value upon their invocation, while asynchronous services
may ingest any number of return values.

• Take care for the executability, i.e., do not kill your service/the executing JVM and
catch/handle your exceptions properly. The reason for this is that the service execution
immediately sets the FAILED state on a service that unexpectedly dies. This implies that you
must also have an eye on the used libraries whether they cause such problems (JVM
termination, throwing of runtime exceptions) and that you as service developer are
responsible for handling such issues on behalf of your service.

• Most state change activities are handled for you in default implementations. In most cases,
the existing/generated service frame allows you to hook into this process. In particular,
platform supplied services do care for their own lifecycle state. Generated Python services are
currently not informed about state changes. This will happen when extending the Python
service environment. We expect no changes to existing service implementations as the Python
services are based on classes with implementation, i.e., just some further methods will occur
there.

• Services are classes. This is no big deal for Java as in Java every language unit is a class.
However, it may be a surprise for Python, as there are also Python Scripts. The Python Service
environment requires that a service is a class and that your operations are correctly declared
with self parameters. The generated code tries to give you hints about the expected
instances for input and output in terms of Python type annotations.

• Services shall be re-entrant, i.e., further input data may arrive while your service is processing.
While synchronous services may be throttled by the service execution engine, for
asynchronous services there is no external visible correlation between input and output data.
In other words, for an asynchronous service, the service developer is responsible for handling
parallel input data. It is also important to consider that the application design may prevent
parallel inputs, but from the service side no assumptions on this can be made. Future versions
of the platform may allow services to declare themselves as non-reentrant or a maximum
parallelization degree.

• Please note further that Java services may employ Python functions, e.g., by executing a
script. Here, the class requirement for Python does not apply, as the Java service calls Python

162
IIP-Ecosphere Platform Handbook

as a whole (in contrast to Python services that are hooked into the Python service
environment). However, it is important that such Python functions are packaged correctly at
compile/packaging time and unpackaged at runtime. For the compile time, a Maven assembly
descriptor shall package all Python scripts and their required resources into a ZIP file and
deploy it to the Maven repo (classifier python, type zip) along with accompanying Java code.
The Java code shall use the ProcessSupport class of the Java service environment, which
cares for correct unpacking and execution of Python scripts. The POM of the utilizing service
must declare both, the Java and the Python artifact (classifier python, type zip) as
dependencies.

• Don’t be blocking. All service operations are expected to be executed as fast as possible, in
particular service management operations. While there may be operations that take a certain
amount of time, e.g., starting a JVM or a complex Python script within a service, longer running,
resource consuming (blocking) operations are not permitted, e.g., reading a file and waiting
for some reactions of the service. Such blocking operations may interfere with other services
or the service control and leave the impression of timeouts, which may cause the respective
service to enter the FAILED state.

• Do not make assumptions about locations of file resources, e.g., images or ML models. A
service will be packaged (along with other services of the same application) into a service
artifact. The layout of the artifact depends on the capabilities and conventions of the service
execution engine. Currently, the platform only employs Spring Cloud Stream with two
packaging strategies, see Section 3.7.3, and you do not know which artifact, i.e., which
packaging layout, will ultimately be started by the user. Moreover, if further service engines
occur, they may come with their own conventions. Thus, the following rules apply:

o For Java services, please rely on the ResourceLoader (see Section 3.5.6), which is
designed to cope with this insecurity in a systematic manner. If for some reason
needed, you may introduce your own (local) resource resolver.

o For Python services, please rely only on the existence of the files that you ship with
your own service (see above), which is unpackaged into an own temporary directory
at runtime. This directory is used as process working directory for the Python process,
which then has access to all Python modules and resources, i.e., resources shall be
loaded only through relative paths starting at the directory where the top-level Python
modules of your service are located. Python Scripts used by Java services are treated
similarly.

For any other resource, e.g., the temporary folder, do not make any assumptions about their
location. While it is usually at /tmp under Linux, this may have changed during platform
installation. For windows, the temporary folder is typically located somewhere in the user
profile (partially also depending on Windows version and user interface language). Java, as well
as Python offer programmatic access to the temporary folder, e.g., via
de.iip_ecosphere.platform.support.FileUtils in Java or
tempfile.gettempdir() in Python.

• Rely on default service implementations where feasible. For each service interface, we
generate a service interface and a default implementation during the instantiation process
(see also Section 6.2). For Java, interface and default implementation are separated, for Python
the interface and implementation are formed by the same class. Currently, such a default
implementation contains code for handling the service parameters as well as for the
asynchronous data ingestors116. Due to type safety, both aspects, parameters and ingestors

116 An ingestor is a (lambda-)function that encapsulates the data ingestion so that the service developer does
not have to care for stream names or routing aspects, which are typically specific for the selected service
execution framework.

IIP-Ecosphere Platform Handbook
163

cannot be realized in a generic manner. Although it is not difficult to implement both aspects
manually, it is also a tedious task. Moreover, it is a common programming error to miss
adjusting the parameters or ingestors when your application model changes, e.g., when
parameters are added or multiple ingestors are needed due to multiple output streams of a
specific service. Inconsistent service implementations easily lead to long debugging tasks,
while just a parameter declarator is missing, a parameter name is wrong or the service
implementation expected to receive just a single ingestor. To ease the work of service
developers and to keep up with changing models, we recommend to rely on generated default
service implementations wherever feasible.

• Service output to the console is typically subject to logging. The logging target may depend on
the active service execution engine, e.g., for Spring Cloud Stream, a temporary folder per
service is created, which contains a folder with the deployment name and within that folder
one file for the standard output or standard error stream. It is important to mention that
depending on the use of Python for services, the logging target may differ. In the current
version of the IIP-Ecosphere platform, Python services being executed through the Python
service environment log into both streams, i.e., the log output appears separated. The process-
based execution of Python functions, which may be used for service implementation, currently
joins both streams for technical reasons and logs them to standard output.

• In addition to logging, further service output can be used for debugging, e.g., the generated
(optional) logging or tracing of messages. Here, logging is more for local debugging while
tracing (messages via the transport layer) can be helpful for remote debugging. To support
remote debugging, the platform contains a transport message logger, which allows for
receiving, emitting, storing and basic filtering of status, trace and monitoring messages.

164
IIP-Ecosphere Platform Handbook

7 Platform Security and Data Protection
In this section, we discuss means to ensure the security and the data protection in the IIP-Ecosphere
platform. We start with (cross-cutting) internal security and security analysis in Section 7.1, the
support/application of concepts of the IoT component profile in Section 7.2 and external security
measures in Section 7.2.

7.1 Internal Security and Security/Privacy Analysis
One main step before managing security and offering security enhanced services is to review where in
fact security is needed. Moreover, concerning the General Data Protection Regulation (GDPR), security
and privacy aspects must be considered as early as possible in the design and development of a system
(privacy and security by design principles). Architectural models, in fact, offer an excellent possibility
to support the realization of privacy and security by design principles.

In Section 3.4.2 we introduced a UML profile called UMLsec. We further introduced two privacy checks
secure links and secure dependency. Such checks provide a possibility to perform security and privacy
checks on the design (architecture) of a platform provided using UML models.

Figure 75: Architecture model for edge deployment annotated with secure links stereotypes (excerpt of Figure 42)

The process of checking and enhancing an architecture model is the topic of our ongoing research. In
this section we describe how we can analyze the architecture of the IIP-Ecosphere data platform using
CARiSMA.

In Section 3.4.2.1, we saw that the secure links annotation enables one to ensure the security of
communications in a physical layer. The following model is annotated with stereotypes relevant to
secure links (Figure 75).

IIP-Ecosphere Platform Handbook
165

The link between the node Loaded c750 Edge and the node Broker in this figure is annotated with
the Lan stereotype. The stereotypes as shown in the lower side of the figure can be set in properties
view. In Figure 19 we saw that a default adversary cannot delete, read or insert on a link annotated
with the Lan stereotype. Furthermore, the dependency between the two artifacts deployed on these
two nodes namely, BrokerServer and PartialApplicationContainer is high (as indicated by
the «high» annotation), requiring that the adversary cannot read, delete or insert on the link.
Concerning the fact that the link is annotated with the Lan stereotype, after performing an analysis
the check should not show any problems. This is in fact true, shown in Figure 76 which demonstrate
the results of the analysis.

Figure 76: The CARiSMA analysis result.

Assuming that the link between the two nodes is annotated with the «internet» stereotype, and
concerning the fact that the default adversary can read, insert and delete on the communication link,
the corresponding error is shown in Figure 77.

Figure 77: The result of the CARiSMA analysis.

If the communication path “Path-Broker-Loadedc750Edge” is annotated with the stereotype
«Encrypted» and concerning the fact that a default adversary can only delete a message on an
encrypted path, the corresponding error after performing a CARiSMA analysis is shown in Figure 78.

Such errors identified in the result of a CARiSMA analysis can inform a security expert or a system
designer about potential threat and risks in a system in the very early phases of system design.

166
IIP-Ecosphere Platform Handbook

Therefore, such an analysis facilitates the process of enhancing an architectural model with
appropriate security and privacy mechanisms.

Figure 78: The result of the CARiSMA analysis.

7.2 Support of the Concepts of the IoT Component Profile in actual Platforms
Technologies used to meet the protection goal of confidentiality are shown with the frequency with
which the technologies are used in Figure 79. According to our studies the use of TLS to ensure
confidentiality and integrity of data transmissions was common. Rarely was a VPN used to secure
transmissions. Seldom was a way provided to encrypt stored data or to encrypt data by default.
Responsibility over data confidentiality was often handed off to an external storage component. All of
the platforms considered using Role Based Access Control (RBAC) as the authorization scheme for
access control for users and components within the platform. A platform may also use Attribute Based
Access Control (ABAC) in addition to RBAC.

Technologies used to meet the integrity protection goal are shown with the frequency with which the
technologies are used in Figure 80. To ensure traceability, as part of the protection goals of integrity
and transparency, some form of centralized logging was often used. Platforms also frequently have
automatic patch management for devices at the edge. Even more common than automatic patch
management for the edge is some form of fleet management. It is noticeable that all platforms that
have automatic patch management for the edge also meet the requirements for fleet management.
Within the platforms, two types of authentication were common. Devices at the edge mostly
authenticate via certificates. In contrast, components within the platform itself often authenticate via
a token mechanism. Less common are Http Basic Authentication, authentication via
username/password, or to an identity provider.

Technologies that are used to fulfill the protection goal of availability are shown in Figure 81, along
with the frequency with which the technologies are used. It was rarely mentioned explicitly that scaling
of resources or the use of message buffers is used to maintain the availability of the platform. Only
backups were found frequently enough to establish a trend, with six mentions. However, there is also
the possibility here that responsibility for the availability of data is handed over to storage components
outside the platform. However, this was not explicitly mentioned in any of the documentation.

Few, if any, technologies were identified to meet the protection goals of Unlinkability,
Transparency, and Intervenability. Technologies that are used to fulfill the protection goal of
Transparency are shown with the frequency with which the technologies are used in Figure 82. Rarely
is data classified according to its protection need as it is collected. No technologies were identified to
enforce Unlinkability that are not also used for Confidentiality. It is noticeable that the Intervenability
objective has no associated technologies.

Some results from this study are provided in the following figures (Figure 79-Figure 83). They
demonstrate the most used mechanisms to ensure the relating security or privacy goal.

IIP-Ecosphere Platform Handbook
167

Figure 79: Mechanisms used to ensure confidentiality.

Figure 80: Mechanisms used to ensure integrity.

Figure 81: Mechanisms used to ensure availability.

168
IIP-Ecosphere Platform Handbook

Figure 82: Mechanisms used to ensure transparency.

A special case was the way users authenticate within the platform. There was no technology that
occurred frequently enough to identify a clear trend. However, all of the platforms studied have a
defined way for users to authenticate. The different technologies are shown in Figure 83. It should be
noted that OAuth 2.0 is the most commonly used technology in the twelve platforms, with only five
mentions.

Platforms rarely defined a secure way to transport data out of the platform ecosystem. Based on these
observations, it can be concluded that the focus in the development of the platforms studied was on
the technologies classically assigned as part of IT security. In particular, these include the goals
confidentiality, integrity and availability. Methods for enforcing data protection, on the other hand,
were implemented rather rarely.

Figure 83: Mechanisms used to authenticate the users in IIoT ecosystems.

The feature model introduced in Figure 24 is in fact for two main purposes created. Firstly, it provides
a structured means to organize the mechanisms and technologies that ensure security and privacy
goals in IIoT platforms. Later this model can be iteratively expanded to include more mechanisms and
technologies provided in a structured way. Secondly, it provides a basis to perform a model-based
analysis to investigate if various components in a system model which represents an IIoT platform
satisfy a required level of security or data protection.

IIP-Ecosphere Platform Handbook
169

7.2.1 Using the Profile to annotate a system model with proper mechanisms
In this section we describe the usage of the feature model to annotate UML models with privacy and
security mechanisms. The feature model (see Figure 24) was therefore first transferred to a separate
UML profile. To transfer the feature model into a UML profile, the navigation direction was inverted
and replaced by an extension. Thus, a directed association from confidentiality to encryption became
"Encryption extends Confidentiality". An example of how the translation between the feature model
and the UML profile works is shown in Figure 84

The «Metaclass» class and «Metaclass» interface were specified as metaclasses for all targets in
order to be able to attach all stereotypes to classes and interfaces. It is assumed that classes and
interfaces can represent components of (I)IoT platforms. Since the feature model and thus also the
profile lists a large number of technologies and implementations to protect the confidentiality and
integrity of data during transport, the objectives confidentiality and integrity were also specified as the
«Metaclass» association. It should also be possible to check the confidentiality and integrity of data
in transit. The assignment of protection goals to metaclasses is shown in Figure 85.

Figure 84: An example showing the realization of the feature model as a UML profile.

Figure 85: The assignment of the security/privacy goals to the meta classes in the UML profile.

7.2.2 Towards an automated analysis to verify required security levels
In this section we introduce rules that are formal enough to be implemented in automatic checks that
can be used to verify the required security level of a system model.

Rule 1: A goal of a class is considered fulfilled if a class connected via an association has at least one
stereotype that fulfills the goal. In this case, the second class is assumed to provide the first class with
technology to fulfill the first class' goal. An example of this case is shown in Figure 86. See Figure 87 for
an example that would not satisfy this rule. Only the stereotypes of classes that are directly linked to

170
IIP-Ecosphere Platform Handbook

the examined class via an association are considered. Classes that are connected to the examined class
via more than one association and thus also via other classes are not considered, since these are not
necessarily integrated into the functionality of the examined class.

Rule 2: A goal for a class is considered fulfilled if the class itself has at least one stereotype that fulfills
the goal. In this case it is assumed that the class itself has technologies to fulfill the objective. A simple
example is shown in Figure 88.

Rule 3: A goal of an association is considered fulfilled if both classes connected via the association have
at least one stereotype that satisfies the goal. In this case, both classes are required to have the same
stereotype, since the same technology must be used when both classes communicate via the
annotated association. For example, in the case of communication, the association, between two
components, the classes, it can be assumed that the communication is only successful if both
components use the same protocol and the protocol represents a technology that meets the
protection goal of the communication. An example of a UML model in which this rule is fulfilled is
shown in Figure 89.

If all goals in the model are met, the analysis is successfully completed. The goals that have been met
are listed and output. If not all goals are met, a search is made for solutions. As suggested solutions,
for all elements that have unfulfilled protection goals, other elements in the model should be listed
that have at least one stereotype with which the protection goal can be met and list which
stereotype(s) fulfill the protection goal. After that, the analysis is terminated as unsuccessful. This
process is shown in Figure 90.

Figure 86: An example for the rule 1.

Figure 87: An example where rule 1 is not satisfied.

Figure 88: An example where rule 2 is satisfied.

IIP-Ecosphere Platform Handbook
171

Figure 89: An example where rule 3 is satisfied.

Figure 90: The workflow of the check.

In the following example we consider the Connectors View shown in Figure 91.

First, the protection goals are then added to the corresponding points in the model or view. For this
demonstration the “Connectors” class is annotated with the <<Confidentiality>> and
<<Integrity>> stereotypes.

This demonstration looks at the Eclipse Leshan and Eclipse Californium components. The excerpts of
the templates is shown in Figure 93.

The result shows that not all protection goals in the model are met. The result is shown in Figure 93.
The detailed report shows that neither confidentiality nor integrity on connectors is fulfilled. As a
suggestion to meet the Integrity on <<HMAC>> from the Eclipse Californium and Eclipse Leshan classes.
The <<encryption>> stereotype from the Eclipse Californium and Eclipse Leshan classes is suggested
as a suggestion for fulfilling confidentiality. In order to fix the detected errors after the failed analysis,
the classes Lwm2mConnector and CoapConnector are annotated with the stereotypes
<<encryption, HMAC>>.

We can perform this annotation of stereotypes here because the function of the Lwm2mConnector
and CoapConnector classes is implemented at this point in the model by the Eclipse Californium and
Eclipse Leshan classes. Therefore, at this point, the stereotypes of the Eclipse Californium and Eclipse
Leshan classes are inherited by the Lwm2mConnector and CoapConnector classes. If after the
classes Lwm2mConnector and CoapConnector were annotated with <<encryption, HMAC>> the
analysis is executed again. The result of the second analysis is a successful check and is shown in Figure
94. The stereotypes <<encryption, HMAC>> for the two classes Eclipse Californium and Eclipse
Leshan are derived from the documentation of the external components.

172
IIP-Ecosphere Platform Handbook

Figure 91: An excerpt of IIP-Ecosphere system model demonstrating the Connectors view.

Figure 92: An excerpt of a table showing the results of investigating the security/privacy mechanisms and technologies
provided by Eclipse Leshan.

IIP-Ecosphere Platform Handbook
173

Figure 93: The results of analyzing the IIP-Ecosphere model. The confidentiality and integrity are not satisfied.

Figure 94: The results of analyzing the IIP-Ecosphere model. The confidentiality and integrity are satisfied.

7.3 External Security
For communicating with other platforms or other instances of the IIP-Ecosphere platform, external
communication is required. In particular, external communication requires a certain level of security.
Currently, two approaches are intended to support such external communication:

• Concepts and components of the International Data Spaces (IDS) that will partly be integrated
into the GAIA-X initiative. We will discuss the plans for IDS support in one of the next versions
of this document.

• An alternative, more lightweight approach is to transparently encrypt all communication
between two parties linked via the internet. KIPROTECT has demonstrated such an approach
in terms of the EPS-System (End Point Server, Figure 95 and Figure 96), which is already being
used to secure data transfers between German health departments and contact tracing
providers. In particular, it is easy to install, offers end to end encryption and mutual
authentication via mTLS and supports encapsulation of arbitrary application-layer protocols
like MQTT or REST interfaces. This may allow for a secure, transparent communication
between two parties, e.g., two installations of the IIP-Ecosphere platform. Moreover, the EPS-
System supports role-based access management that can restrict access to specific services
and methods based on group memberships as well as additional criteria, so that the platform
communication can be provided in a selective manner to actors in the ecosystem. Providing
an additional level of authentication and access control via the EPS system on top of the
existing ones of the platform can be part of a good “defense in depth” strategy.

Since version 1.3.0, BaSyx provides RBAC as one mechanism to protect the managed AAS, in particular
their REST API. So far, the IIP-Ecosphere platform and its management UI only rely on TLS rather than
authentication and RBAC, but we consider an upgrade of the security strategy for one of the next
releases of the IIP-Ecosphere platform, which then requires exchange of access tokens (and potentially
certificates) between the platform services, the device services and the management UI.

174
IIP-Ecosphere Platform Handbook

Figure 95: Direct communication between organizations through the EPS system

Figure 96: Indirect, proxy-based (end-to-end encrypted) communication between organizations through the EPS system.

EPS-
Server

EPS-
Server

Internal
Service

Internal
Service

Service

Directory

Organization BOrganization A

gRPC or alternative protocol (REST, ...)

Authentication and encryption via mutual TLS

Service Records (Permissions, Methods, ...)

EPS-
Server

EPS-
Server

Internal
Service

Internal
Service

Service

Directory

Organization BOrganization A

Pass-
Through

Proxy

IIP-Ecosphere Platform Handbook
175

8 Implementation
In this section, we briefly discuss aspects of the implementation of the IIP-Ecosphere platform, i.e.,
decisions we made during the implementation (Section 8.1), how to obtain a binary version (Section
8.2), the dependencies and how to compile the sources (Section 0), and how to install and to use the
platform (Section 8.4). Section 9 on how-to’s will take up some of the topics, but more from the
perspective on how to extend or interact more deeply with the platform (code). Intentionally, we do
not discuss code here. For this purpose, we refer the reader to the IIP-Ecosphere GitHub repository21

and in particular the Markdown117 readme files that are provided for the platform and for individual
components.

8.1 Implementation decisions
We briefly discuss now technical decisions or issues that occurred during the development of the IIP-
Ecosphere platform. This list may not be complete118 and is subject to incremental extension:

• As more parts and pieces show up, e.g., AAS sub-models, the more decisions on the startup
process of the platform have to be made. However, some of these decisions impact testing, as
a full startup including AAS sub-models is not always desired or may even break tests. In these
cases, it is possible to mock out the AasFactory or to create missing server instances for the
platform AAS via the AasPartRegistry, both located in the Support Layer (Section 3.5).

• Akin, many components make assumptions on default instances for alternative components
in testing. Typically, we use AMQP as testing protocol (the server is rather easy to use and the
implementation is stable) as well as BaSyx as AAS implementation. See architecture rule C5
and C6 in this respect.

• BaSyx and Spring use different versions of the expression language javax.el.el-api,
which, when utilized together on the same classpath, prevent Spring Cloud Stream from
starting. Wherever possible in installation packages, we try to separate AAS and stream
processing, i.e., stream processing components shall run in their own JVMs controlled by a
supervisor JVM containing the ECS runtime, which also maintains the representing AAS of the
installation part. For uniform technical configuration, it is desirable that the ECS runtime is also
started as a Spring application, while use of Spring Cloud Stream shall be prevented in there.

• Different external components depend on Google Guava in several versions. As a Guava
version below 22 prevents some protocol test cases to be executed, we decided to fix Google
Guava to version 22 in the platform dependency management. Similarly, further components
may be fixed to rather narrow version ranges in the managed platform dependencies (and
transitively in components such as EASy-Producer).

• So far, we use org.slf4j for logging, as this library is also used by BaSyx and Spring (although
in different versions). Logging setup (also called configuration) is typically added during
platform instantiation or for testing, also to avoid conflicting setups. In the logging setup as
well as in the generated command line scripts we take care of actual security vulnerabilities
and disable affected functionality. However, it is not possible to replace all potentially
vulnerable versions, e.g., of logging frameworks, as partially the versions are determined by
dependencies that we rely on and at the point in time of writing upgrading these components
to more recent versions was considered as a project risk.

• We added a simple resilience mechanism for failing connections to AAS implementation
servers. In the version of BaSyx that we are using, implementations of operations, property

117 https://de.wikipedia.org/wiki/Markdown
118 We do not intend to repeat all coding conventions for the platform in this document. We just listed here the
most important ones with their rationales as overview. For details, please refer to https://github.com/iip-
ecosphere/platform/blob/main/platform/documentation/README.md

https://de.wikipedia.org/wiki/Markdown
https://github.com/iip-ecosphere/platform/blob/main/platform/documentation/README.md
https://github.com/iip-ecosphere/platform/blob/main/platform/documentation/README.md

176
IIP-Ecosphere Platform Handbook

getters or setters are attached through functors (usually lambda functions) to the AAS. In such
a functor, currently the preferred style seems to be to create one connector instance per
operation or property call, which builds up a network connection to an AAS implementation
server. If the connection fails, e.g., because the AAS implementation server was intentionally
shut down, let’s say when stopping a service through the service manager, the AAS will
continue connecting unsuccessfully to that AAS implementation server. At a glance, this only
is an issue if the operation or property is addressed. However, in the BaSyx version used in this
release, each access to a remotely deployed AAS causes an execution of all these functors
(probably to serialize and transport the respective “value”), leading in some cases to
(seemingly) endless trials to connect to the intentionally closed server. Although we delete the
respective operation/property from the AAS before shutting down the service or the
respective AAS implementation server, respectively, the described behavior occurs. As a
mitigation and a first step towards connection resilience, the functors attached by the AAS
abstraction for BaSyx track erroneous connections for all connector instances and return a
constant value on failures. As this decision is intentionally global for all connector instances,
we also have to revert the decision if the server becomes available again or the same address
is used in another context. Currently, erroneous connections are disabled by default for a time
period of one minute. Later versions of the platform shall integrate this behavior with the port
release of the network manager or with a connection trial after a given timeout.

• As an operationalization of architectural constraint C9, we limit the type of the exceptions to
be used in Java code. While in Java there is a style of throwing exceptions of different types
for different purposes, we decided to use only a few types for a more uniform exception
handling, namely, as checked exceptions IOException if any form of input/output may fail,
ExecutionException if processing may fail (in particular indicating failing AAS operations)
and IllegalArgumentException as the only unchecked exception if parameters are
semantically wrong (e.g., for object construction)119. However, unchecked exceptions may be
false friends and shall be used carefully. As discussed for C9, emitting exception information
like stack traces to the console is generally forbidden and logging shall not be considered as
the best or only option but rather as the ultimate option if no other exception handling like
alternative/default processing or recovery is possible. Logging of exception traces shall only be
applied if one cannot clearly distinguish between an error or a warning situation.

• Test artifacts shall be strictly separated from production artifacts as already mentioned in
Section 8.1.

For easing the implementation of new components or examples, we provide several templates that
already have built in conventions and development setup. Figure 97 illustrates the template for a
Maven-based Java component120.

• The name of the project indicates the component name that shall be reflected in the java
packages for production and testing code as well as in the Maven POM file. The name of the
test package shall start with “test”, but if too many methods have to be declared public to be
accessible to tests, the package may directly start with “de” to allow for package access.
Packages shall be documented (package-info.java), the main test suite is
AllTests.java in the test package (only tests declared there will be executed).

• The component is by default developed for JDK 11. If a more modern JDK for central platform
components is needed, change the system library and the compiler settings in the Maven
POM. Please take the smallest possible JDK version for compatibility, e.g., JDK 13.

119 Generally, please avoid such Ninja exceptions or at least document them where absolutely required in terms
of (unneeded) throws clauses as well as in the related Javadoc comment.
120 Located in https://github.com/iip-ecosphere/platform/tree/main/platform/tools

https://github.com/iip-ecosphere/platform/tree/main/platform/tools

IIP-Ecosphere Platform Handbook
177

• The component template ships with a checkstyle setup taking the style information from the
platformDependencies project (which must be obtained from GitHub and installed by
Maven before) use.

• There is a default .gitignore file that excludes the target folder. Please ensure that only
needed files that are not generated/obtained during the build process are committed, e.g., the
configuration model (usually in src/main/easy) shall not be committed rather than
obtained from its Maven deployment (usually phase generate-sources) so that model
updates can easily be followed by issuing that command, also during automated builds.

• The build-jk.xml file is needed as starting point for the continuous integration (Jenkins,
therefore “-jk”). This file refers to further ANT imports containing the settings for Jenkins as
well as macros for Maven execution and deployment. As these files are in other repositories,
it may be that your IDE issues errors about missing files. You can ignore these errors. Upon
first use of the template, please change the name of the project as well as the pattern for the
files to be taken from the Maven target folder for Maven deployment. In specific cases, further
adjustments are needed here. Some example projects do not have this file rather than a
build.sh Linux script, which in these cases is (so far) more convenient then an ANT file.

• pom.xml is the Maven build specification. Usually, it declares the IIP-Ecosphere platform
dependencies as parent, defines only its artifactId (taking over the IIP-Ecosphere group),
its deployment form, name, description and dependencies. The build plugins are inherited
from the parent. In some cases, e.g., for obtaining/unpacking specific artifacts like the
configuration model further steps can be added, which usually extend the existing build setup.

• Ultimately, README.md is the readable documentation of this component. It shall briefly
explain the aim of the component, its setup (Yaml-Structure), its specific
requirements/limitations but also actual issues and problems. Please keep this file up to date.
Upon first commit, this file shall be linked into the parent GitHub folder README.md (see
Figure 2 and the platform layering for selecting a proper folder) as well as in the top-level
README.md file of the platform by HTML links.

Figure 97: Structure of the component template “basicMaven” in the GitHub repository.

178
IIP-Ecosphere Platform Handbook

Along with this project, the tools folder of GitHub contains also the template project impl.model
for the setup of applications. In contrast to the example structures, which unify both sides currently
through two separate Maven files, these projects shall help setting up applications in separate folders.
Moreover, the tools folder also contains the project MavenCentral, which contains tools for
creating a release, like changing Maven version numbers, but also a tool to clean up a local Maven
repository from superfluous SNAPSHOT versions.

8.2 Obtaining the IIP-Ecosphere platform
The sources of the IIP Ecosphere platform are available on GitHub121. Released binaries of the IIP-
Ecosphere platform can be obtained from Maven Central122. Snapshots from the continuous
integration can be obtained from the SSE Maven repository123.

However, it is important to keep in mind that the IIP-Ecosphere platform consists of several alternative
or optional components that must be consistently configured to obtain a valid installation for a certain
setting. We will discuss in Section 8.4 how to utilize the configuration approach to obtain the binaries.
Below, we summarize the (optional/alternative) components, the respective location of the
configuration settings and the JSL descriptors that can be used to provide extensions. Table 24
summarizes the settings and the provided descriptors. Most descriptors define exactly one instance to
be created, while descriptors indicated with * in Table 24 may specify multiple instances.

Table 24: Configuration and extension mechanisms used in the IIP-Ecosphere platform components (for descriptors, we
abbreviate “de.iip_ecosphere.platform” by “d.i.p” for formatting reasons, * indicates the multiplicity)

Layer/
Component

Settings Supported JSL descriptors

Support - d.i.p.support.LifecycleDescriptor*
d.i.p.support.LifecycleProfile*
d.i.p.support.aas.AasFactoryDescriptor
d.i.p.support.aas.ProtocolDescriptor
d.i.p.support.aas.AasServerRecipeDescriptor
d.i.p.support.net.NetworkManagerDescriptor
d.i.p.support.iip_aas.AasContributor*
d.i.p.support.iip_aas.IdProviderDescriptor
d.i.p.support.metrics.SystemMetricsDescriptor*
d.i.p.support.identities.IdentityStoreDescriptor
d.i.p.support.resources.ResourceResolver*
d.i.p.support.semanticId.SemanticIdResolverDescriptor*

Transport - d.i.p.transport. TransportFactoryDescriptor
Connectors - d.i.p.connectors.ConnectorDescriptor
Services iipecosphere.yml d.i.p.services.ServiceFactoryDescriptor
Resources /
Monitoring

iipecosphere.yml d.i.p.ecsRuntime.EcsFactoryDescriptor
d.i.p.ecsRuntime.deviceAas.DeviceAasProviderDescriptor*

Device
management

Iipecosphere.yml d.i.p.deviceMgt.storage.StorageFactoryDescriptor
d.i.p.deviceMgt.registry.DeviceRegistryFactoryDescriptor

Configuration iipecosphere.yml -
Platform iipecosphere.yml -

121 https://github.com/iip-ecosphere/platform/
122 https://repo1.maven.org/maven2/de/iip-ecosphere/platform/
123 https://projects.sse.uni-hildesheim.de/qm/maven/de/iip-ecosphere/platform/

https://github.com/iip-ecosphere/platform/
https://repo1.maven.org/maven2/de/iip-ecosphere/platform/
https://projects.sse.uni-hildesheim.de/qm/maven/de/iip-ecosphere/platform/

IIP-Ecosphere Platform Handbook
179

The Support Component does not take specific settings into account rather being set up through upper
platform layers/components. In contrast, the Support component defines several fundamental JSL
descriptors to allow the upstream platform components to hook into at defined points or to allow for
external extensions. We summarize the descriptors now and link them to the variability provided by
the platform and the platform configuration approach. The descriptors are:

• LifecycleDescriptor with allows adding components to the startup/shutdown process of
a platform component. These descriptors can indicate a certain startup level and they even
can cause a shutdown of a platform component. Adding certain descriptors to a platform
binary causes the respective components to be started. Upper platform components ship with
their descriptor file (in META-INF/services) so that either we add a certain component or
a descriptor to the instantiated platform binaries (positive variability) becomes then active. In
seldom cases, we may add the component and remove the descriptor to disable the respective
registration (negative variability).

• As discussed in Section 3.5.3, lifecycle profiles may be a resort when dependencies run into
conflict or individual parts of larger lifecycles shall be executed separately, e.g., to virtualize
these parts. A LifecycleProfile allows for defining the lifecycle descriptor to be executed
when the profile becomes active. A component may define multiple (alternative) profiles.

• AasFactoryDescriptor indicating the AAS factory to be used. A specific descriptor is
shipped with the AAS (abstraction) implementation. The default implementation is
support.aas.basyx. The platform just takes the first available descriptor (excluding
potential descriptors used in testing), allowing here only for a single choice variability. By
including a certain AAS implementation component, i.e., adding it to the platform classpath,
the descriptor is made available and the respective factory becomes active (positive variability)
as done during platform instantiation.

• ProtocolDescriptor is an optional extension descriptor indicating AAS implementation
protocols that are not shipped with the platform. By default, TCP and HTTP/REST protocols for
the BaSyx Virtual Automation Bus are provided, but other protocols may be desired in a certain
installation. Here, additional external components can add arbitrary protocols (positive,
unlimited variability) as long as the protocol names are unique. New protocols must be added
to the configuration model as potential alternative so that the selected/desired protocol can
be specified while instantiating the settings of the upper components.

• AasServerRecipeDescriptor defines the specific recipe to be used when creating an AAS
server. The AAS abstraction defines a local server recipe for in-memory storage. However, on
a server sided installation, also a persistent storage of the AAS may be required, which can
lead to a large set of dependencies and unnecessary allocation of resources on edge devices.
The required behavior, storage options but also dependencies can be defined by a specific AAS
server component.

• NetworkManagerDescriptor is an optional descriptor that indicates which network
manager shall be used by a component. The Support component does not ship with any
descriptor information so that the platform instantiation must provide respective files (in
META-INF/services). One alternative to the local manager is a global AAS-based network
manager for some ports backed by a local network manager.

• AasContributor is an extension descriptor for higher level platform components to
conveniently build a common AAS for the platform. AAS contributors define specific sub-
models and announce their presence through the AasContributor descriptor, i.e., any
descriptor found will be used to set up the common AAS for the platform. Examples in the
Support Component are the platform “nameplate” sub-model and the network manager AAS
(providing access to the network manager selected by the NetworkManagerDescriptor).

180
IIP-Ecosphere Platform Handbook

Although the descriptors shipped with the platform are intended to be executed, the platform
instantiation may add or remove specific contributors to customize the AAS of a certain
component. Moreover, the descriptors can declare themselves as invalid as, e.g., instances
required to implement the AAS are not present.

• The IdProviderDescriptor is an optional descriptor indicating which strategy shall be
used to determine the identification of a device. By default, the IIP-Ecosphere platform uses
the MAC address of the device that is enumerated first by the system as device id. This default
provider also allows for overriding the device id from via a command line parameter (cf. Table
28), in particular for testing. When used in an AAS, the provided device id may be modified so
that it complies with the rules of an AAS short identifier, e.g, additional characters may be
prefixed or whitespaces may be removed.

• The SystemMetricsDescriptor is an optional descriptor allowing to define a target-
system specific implementation of the system metrics (cf. Section 3.5.4). Multiple system
metrics descriptors can be specified, which may include system specific metrics descriptors. Of
course, only one descriptor shall be active. Thus, with higher precedence, the first descriptor
in the loading sequence is selected that declares itself as enabled, e.g., based on certain vendor
system properties that uniquely identify a system installation. If none is enabled, a fallback
descriptor, such as the default metrics via jSensors is activated. If no such fallback descriptor
is available, the default metrics plugin is activated, which just returns constant values.

• The IdentityStoreDescriptor is an optional descriptor to define the actual
implementation of the identity store. The default is the YamlIdentityStore reading
identityStore.yml.

• The ResourceResolver realizes a strategy to load file-based program resources (cf. Section
3.5.6). The basic strategy loads from the root folder of a Jave archive. Additional resolvers may,
e.g., treat sub-folders of such an archive as root folder for the resolution, e.g., as the resolver
for the Spring FAT Jar format. As the ResourceResolver is descriptor and resolution
strategy, we decided to drop the usual “Descriptor” name suffix here.

• The SemanticIdResolverDescriptor allows hooking one or multiple semantic id
resolvers (see Section 3.5.7) into the platform. Two pre-defined descriptors are based on local
excerpts of ECLASS and the admin-shell.io IRI namespace, a further one is the REST-based
semantic Id resolver utilizing the ECLASS web service.

The Transport Component in the Transport and Connectors layer does not define own settings. This is
done by the TransportFactoryDescriptor to allow concrete transport protocol implementations
to hook themselves into the TransportFactory. Moreover, it offers adding serializer
implementations to the SerializerRegistry. For a concrete application, the respective serializers
are created during platform instantiation and registered through generated code in the
SerializerRegistry.

The Connectors Component in the Transport and Connectors layer defines the
ConnectorDescriptor for announcing available descriptors that can be used / shown up in the AAS
sub-model of the Connectors Component.

The Services Component takes setup information from a unified YAML file called iipecosphere.yml,
which must be present on the classpath of the component124. This file is instantiated through the
configuration model during platform instantiation and added to the respective instantiated
components. Depending on the service manager to be used, specific setup information may be
required, e.g., for Spring Cloud Streams the full breath of the used Spring Components can be

124 The detailed settings are documented in the README.MD file of the respective components.

IIP-Ecosphere Platform Handbook
181

configured in this file125). Moreover, the Services component defines the
ServiceFactoryDescriptor that announces the actual ServiceManager to be used.

Similarly, the ECS Runtime Component in the Resources and Monitoring Layer utilizes own entries in
its iipecosphere.yml file and provides an own descriptor (EcsFactoryDescriptor) to announce
the configured container manager. The AAS structure of the platform relies on devices with own AAS.
However, it is unclear where the AAS for a certain device does come from, in particular if the device is
already older or the vendor does not provide an AAS. To handle these cases, the ECS runtime allows
to customize the AAS origin via the DeviceAasProviderDescriptor, which determines the
component that returns the address of the respective device AAS (the component may also create the
AAS if needed). By default, the platform reads/constructs an AAS from a simple Yaml file (with
associated images) or an AASX file resolved from the classpath (see also Section 3.8.1).

In the Configuration Layer, the Configuration Component considers specific settings in its
iipecosphere.yml file, e.g., where to find the configuration meta-model, the platform
configuration, where to write instantiated components to etc. As the configuration component will
offer own operations to modify the configuration, it also utilizes the descriptors defined by other
components/layers, e.g., the AasContributor, to hook itself into the platform mechanism to create
a joint platform AAS.

The Platform Component is a collection of the basic services to be started, in particular a (persistent)
AAS server or a global network manager. Thus, it requires specific setup information in its
iipecosphere.yml, e.g., on which port and using which implementation protocol the global
platform AAS shall be set up (the individual AAS are then remotely deployed into this AAS server).

Besides the services and their technical network addresses, the platform also uses some pre-defined
Transport Layer channels. These channels are briefly summarized in Table 25126. It is important that
channels are independent of the transport protocol, i.e., apply equally to, e.g., MQTT or AMQP.
Moreover, the default metrics channels currently use a fixed JSON format and rely on a default String
serializer defined in the Transport Layer. The service channels use an application-specific format
determined by the active serializer and the code generation of the platform instantiation process.

Table 25: Transport Channels used by the platform

Channel Kind Component Format Explanation
EcsMetrics global ECS Runtime JSON Metrics reporting by ECS

Runtime
ServiceMetrics global Service Mgt.,

Service Env.
JSON Metrics reporting by Services,

can be augmented by
application-specific metrics.

ComponentStatus global all JSON Notification about added,
changed, removed
components. Format pre-
defined in transport
component.

Trace global All JSON Optional notification about
received/sent data or
parameter changes. Enabled

125 In Spring applications, this file is typically called application.yml. The name for the IIP-Ecosphere
platform is different, also as Spring is only used in alternative components.
126 Due to problems with Spring Cloud Stream for asynchronous data injection, a workaround for connectors
uses further, undocumented streams. In future versions, we plan to completely rely on Spring Cloud Stream to
be able to exploit existing binders. If this fails for technical reasons, we will detail the stream names here.

182
IIP-Ecosphere Platform Handbook

Channel Kind Component Format Explanation
per service via configuration
model. Format pre-defined in
transport component.

Alert global all JSON Notification about monitoring
alerts, format pre-defined in
transport component.

data_<service>_<function>_
<app>_<instance>

global Application application
specific

Inter-device transport
channels per service and
function. The channel name
also contains the application
identifier and, if utilized, the
application instance id (may
be omitted including the
separating underscore).

data_<service>_<function>_
<app>_<instance>

local Application application
specific

Intra-device transport
channels per service and
function (similar to global
service transport channels
above).

Further, (components of) the IIP-Ecosphere platform recognizes the command line parameters
summarized in Table 28.

Table 26: Command line parameters recognized by the platform (state as --parameterName=value)

Parameter name Explanation Default
iip.port Network port on which the AAS implementation server shall

be running. Overrides the respective value in the platform
configuration as well as the environment setting with the
same name. May be helpful to setup containers.

Platform
configuration

iip.port.svcMgr Overrides iip.port but only for the service manager. Platform
configuration

iip.id Device id as used by the ECS-Runtime and the service
manager (use consistently, service manager must have
same iip.id as corresponding ECS-Runtime). Depending on
the strategy realized by the active IdProvider, a device id
given on the command line may be ignored. The default
provider considers the command line.

MAC-based
IdProvider

iip.profile Start the given lifecycle profile via its name. The default
profile starts all lifecycle descriptors of a component. See
Table 27 for available lifecycle profiles.

“default”

Table 27: Lifecycle profiles defined by the platform.

Component Lifecycle Profiles Default
Monitoring integration
for Prometheus

• Monitoring.prometheus: Start the full integration in
an own JVM.

• Prometheus: Start only the platform-provided
Prometheus through an own JVM.

• Prometheus.exporter: Start only the platform side of
the integration, i.e., metrics exporter and alert
manger integration in an own JVM.

Start the full
integration
with the
platform
component;
conflicting
with BaSyx.

IIP-Ecosphere Platform Handbook
183

Moreover, the IIP-Ecosphere platform recognizes the following more overarching (Java) system
properties in Table 28:

Table 28: System properties recognized by the platform (stated as -Dproperty=value)

Property Explanation Default
iip.pid.dir Directory where process identification files

(PID) in Unix style are stored. These files
indicate that a certain process was started.
This information can be helpful when
automatically starting platform processes,
e.g., through a process manager. Default files
are iip-platform.pid, iip-
ecsRuntime.pid and iip-
serviceMgr.pid.

The system’s
temporary
directory.

iip.port Network port on which the AAS
implementation server shall be running.
Overrides the respective value in the platform
configuration. May be helpful to setup
containers.

Platform
configuration

iip.port.svcMgr Overrides iip.port but only for the service
manager.

Platform
configuration

iip.identityStore Folder containing the identity store with the
file name / format required by the actual
pluggable identity store (see Table 24).

.

iip.installedDeps Folder containing the
installedDependencies.yml file required
by the service manager and individual
services.

.

iip.app. Name prefix of system properties to be passed
on to the running service applications, e.g., to
ease debugging.

-

iip.devices.plcNext.
grpc.sock

Location of the GRPC socket for the optional
PLCnext system-level monitoring plugin.

/run/plcnext/
grpc.sock

iip.eclass.keystoreKey Identity store key providing access to the
authentication certificate for the ECLASS web
service.

eclassCert

iip.eclass.locale Locale used as preferred result language when
querying the ECLASS web service.

System locale

iip.test.dataFile Name of the data file in generated
service/connector tests. Typically, as
documented in the generated code, the
default is a service-specific file name, but may
be overridden, e.g., for continuous
integration.

As documented
in generated
code

8.3 Compiling the IIP-Ecosphere platform
Due to the various optional and alternative components in the IIP-Ecosphere platform that we manage
in individual artifacts/Eclipse projects, compiling the IIP-Ecosphere platform is not trivial. Usually the
binaries of the individual components are either available via Maven central (releases) or SSE Maven
repository (snapshot, releases). These builds are created and deployed by the SSE Continuous

184
IIP-Ecosphere Platform Handbook

Integration (CI) server as illustrated in Figure 98, which knows about all the build dependencies among
the components and builds the parts and pieces along the dependency tree when the code of a single
component changes. As part of building, it executes the respective component tests, assembles the
documentation and, if successful, deploys the respective snapshots to the SSE Maven repository or the
stable releases from Maven (or related repositories).

Figure 98: Screenshot of the SSE Continuous Integration server (IIP-Ecosphere view, cropped)

For completeness, we discuss below the dependencies among the individual components of the IIP-
Ecosphere platform (as illustrated in Figure 99). As indicated in Figure 99, some components need
specific settings for successful testing, e.g., the RTSA components need to know which JDK to use for
RTSA execution (strict Java 8 for the original RTSA).

The platformDependencies project collects the dependency information of (optional or required)
external components that are used by at least one component and do not constitute singleton
wrapped components (cf. Section 4). In other words, the platformDependencies project defines
the managed dependencies of the platform with their respective version number (range) but without
actually using them. The dependent components rely on this information and just state the required
components without replicating their version numbers (Maven parent POM mechanism). As we usually
do not build external components, e.g., protocols, rather than relying on available release binaries,
these dependencies are out of scope.

Building the IIP-Ecosphere platform starts with compiling and packaging the IIP-Ecosphere Maven
plugins for dependency management (obtaining, unpacking and updating the configuration meta-
model), Maven invocation (executing sequences of goals in different profiles on the same POM) and
Python (syntax check and testing). As these plugins are used by the build process defined in the
platform dependencies, they must be built before without upstream dependencies.

The Support Components consisting of support and the AAS abstraction support.aas are
the most basic IIP-Ecosphere components without further dependencies to the platform. As support
provides some basic functionality that is also used in components that strictly depend on Java 8 or
would break their build flow, support is also based on Java 8. In particular, it integrates a Python
helper class identifying the actual Python binary from the IIP-Ecosphere Maven plugin, which, in turn,
forces the IIP-Ecosphere Maven Plugin to Java 8.

IIP-Ecosphere Platform Handbook
185

Figure 99: Dependencies among the components (platform examples not shown, folder names in GitHub)

transport

transport.amqp

transport.mqttv3

transport.mqttv5

transport.spring

transport.spring.amqp

transport.spring.mqttv3

transport.spring.mqttv5

connectors

connectors.aas

connectors.mqttv3

connectors.mqttv5

connectors.opcuav1

BaSyx

Legend

platformDependencies

support.aas

support.aas.basyx

support.iip-aas

transport.spring.hivemqv5

transport.spring.hivemqv3

services.environment

services

ecsRuntime

ecsRuntime.docker

direct dependencies
indirect/cross dependencies

JDK 11 compilation/testing

11

test.amqp.qpid

test.mqtt.hivemq

test.mqtt.moquette

test.simpleStream.spring

11

services.spring

configuration.configuration EASy-Producer standalone
1111

services.environment.spring

ecsRuntime.kubernetes

deviceMgt

monitoring

platform

test.configuration.configuration

deviceMgt.minio

deviceMgt.thingsboard

Install

11

securityDataProtection

security.services.kodex

deviceMgt.basicRegistry

deviceMgt.s3mock

support.aas.basyx.server

monitoring.prometheus

kiservices.functions

support.dfltSysMetrics

managementUI
Angular

examples

examples.vdw

examples.rtsa

examples.kodex

examples.python

examples.pythonSync

examples.hm22

11

11

11

11

11

11

11

configuration.maven
11

connectors.mqtt
11

11

11

11

11

11

11

11

11

11

11

11

11

kiservices.rapidminer.rtsa11

11

8

8 further JRE 8 required for execution

11

11

11

11

11

planned/not yet integrated

11

11

11

11

11 11

11

11 11

11
support.sysMetrics.plcnext

support.semanticId.eclass

11

11

JDK driving force11

11

11

11

11

11

P Python 3.8 with basic dependencies

P

P

P

examples.templates

11

P

P

tools.maven.dependencies

tools.maven.invoker

11

11

11

11

11

11

11

11

11

11

11

11

ecsRuntime.lxc
11

kiservices.rapidminer.rtsaFake
8

RTSA
8

JDK 8 compilation/testing required8

support

tools.maven.python
P

8

8

186
IIP-Ecosphere Platform Handbook

The BaSyx default implementation (BaSyx is considered as main driving force for the selection of the
actual Java version of the platform) and the iip-aas support functions depend directly on
support.aas and are build when support.aas changes. Further, two basic Maven plugins for
realizing an integrated build process for the platform and the applications directly depend (like
support.aas) on the platform dependencies.

The Transport Component (transport) is then the next component to be built after the Support
Layer. If transport is changed, it triggers the building of the transport connectors (transport.*),
the basic (optional) Spring integration (transport.spring) and the Spring binders
(transport.spring.*) utilizing the transport connectors. The Connectors Component
(connectors) relies on the type translation and serialization mechanisms of the Transport
Component and, further, the individual platform/machine connectors (connectors.*) depend on
the Connectors Component. The MQTT platform/machine connectors are, in turn, based on the
corresponding transport connectors.

The components of the service layer (services.*) consist of the service manager interface including
the abstract creation of the AAS (services), the specific implementation for Spring Cloud Streams
(services.spring) as well as the generic service environment (services.environment) and the
Spring-specific service environment (services.environment.spring). The IIP-Maven plugin for
Python depends on the generic service environment, in particular to rely on common capabilities to
determine the actual Python binary to be executed (which may differ in the CI environment for
historical reasons).

The resource/deployment components (ecsRuntime.*) are partially realized, e.g., the ECS runtime
and the container manager for Docker. The container manager for Kubernetes and the platform
monitoring are in planning/realization and not part of this release. The first components for the device
management have been integrated (deviceMgt.*), including an optional integration of Minio for
object storage and ThingsBoard for device management. Similarly, initial steps towards the
integration of security and data protection services (securityDataProtection.*) have been done.
Within the reusable intelligent services, the RapidMiner RTSA (version 14) requires Java 8 for
execution. As RTSA is an IPR protected component, the regression testing and the RTSA example are
based on a fake version of RTSA, a program that pretends to be RTSA without its AI capabilities. In turn,
our fake RTSA must be built with Java 8 to mimic the prerequisites of RTSA.

The platform server(s) component provides the startup sequence for central services as well as the
preliminary command line interface for platform functionality. Currently, neither the device
management nor the security services are part of the assembled platform server component.

Further, there the integration of the configuration model (configuration.configuration), which
depends on the capabilities of EASy-Producer (stand-alone, Maven-based integration). The IIP-
Ecosphere Maven plugin for executing the platform instantiation depends on
configuration.configuration.

At the end of the hierarchy, there is currently the IIP-Ecosphere platform management user interface.
As the Web user interface is realized in Angular based on information from the platform AAS as
backend, this requires a different build process. The TypeScript code of the UI is compiled using
angular, packaged, archived by the CI server and then, using a pseudo Maven POM, deployed as binary
component into the Maven repository of the platform. The platform instantiation takes this binary up
as usual for other components with binary processes, unpacks and customizes the UI.

The Test Components (test.*) are a side track but required for testing. The protocol related test
components contain integrations of embedded protocol brokers, such as Apache Qpid, HiveMq or

IIP-Ecosphere Platform Handbook
187

Moquette, which shall be explicit testing dependencies rather than part of the production code.
Apache Qpid (due to requested bug fixes) and HiveMq are further driving forces for the selection of
the JDK for the IIP-Ecosphere. Moreover, test.simpleStream.spring is a testing artifact
containing a simple stream processor chain for testing the Spring service manager in the Services Layer.
Further, test.configuration.configuration provides implementations for the streaming
interfaces created by the Test configuration instantiations in configuration.configuration. This
introduces cyclic dependencies, but only for the very first build. For such a build, the configured
artifacts in the respective tests can be set to an empty string, the test passes, creates and deploys the
interfaces and the test artifacts can be build and deployed. In a second round, the artifact configuration
is restored and the test runs again, now correctly packaging the streaming artifacts.

If a local build is required, we provide a multi-module Maven POM on the top-level of the platform
code repository. Given that all required software (Java, Maven, Python and dependencies due to
building the examples) is installed as discussed in Section 8.4, the following command (Linux, “~$“
indicates the shell prompt) builds the full platform, the Maven command

builds the full platform. Due to specific dependencies between tests and their service implementation,
a first offline build may require the setting -Diip.build.initial=true and to speed up the build
(otherwise it may take around two hours), tests may disabled with -DskipTests. Both optional
settings must be stated at the end of mvn install.

8.4 Installing and using the IIP-Ecosphere platform
As discussed above, the IIP-Ecosphere platform must be configured and instantiated before it can be
executed. Thus, the continuous integration does not provide complete platform dependencies (except
for those created as part of testing configuration.configuration). Below are the required steps
to run the actual release of the IIP-Ecosphere platform to explore the functionality (this may change
in the future)127. The setup was tested with JDK 11, JDK 13, Maven 3.6.3, Maven 3.8.5 and Docker
20.10.7, Windows 10 as well as Ubuntu 20.4.1 and 20.4.3.

1. Prepare the operating system. For the next steps in this section, we assume Linux installed on
two machines (assuming 147.172.178.145 as “server” and 147.172.178.143 as “device”, we
will adjust the IP addresses in the fourth step). We use the roles “server” (central installation)
and “device” (remote compute resource, e.g., Edge device, virtual machine, etc.) to refer to
target machines for the installation. In particular, in a test setting, “server” and “device” may
be the same physical machine. In the command line illustrations, “~$“ indicates the shell

prompt (the output of “$” depends on your active shell) including the actual directory. We
assume that you start in your home directory (~). Install Java JDK128 and maven (version 3.6.3).
Docker (version 20.10.2) is only needed if you want to execute the platform in a containerized
setup.

127 Please take care that the containing file path does not contain unusual characters, such as #. This may cause
parts of the instantiation to fail.
128 A JDK is needed for the platform instantiation rather than a JRE. As also discussed in Section 2, for devices a
minimum Java 11 is required, e.g., you may install JDK 13 on the „server“ and JDK 11 on the „device“ or in
respective containers. If your installation does not set the JAVA_HOME variable, the Maven scripts created
during platform installation may issue a stacktrace warning that Javadoc cannot be executed, but the scripts
shall pass. To prevent this, set JAVA_HOME so that it points to the JDK installation home directory.

~$ sudo apt install openjdk-13-jdk-headless
~$ sudo apt install maven
~$ sudo apt install docker.io

~$ mvn install

188
IIP-Ecosphere Platform Handbook

On devices, the installation may differ as Java/Maven could be part of the container hosting
the ECS runtime or the Service Manager/Services. By default, Docker requires root permissions
to execute functions. If you want to use docker as “normal” user129, perform a log out and log
in so that your group membership is re-evaluated.

Depending on the use of Python in services, the build process for applications may include
Python syntax checking and execution of Python unit tests. If Python is utilized, a recent Python
3.9 with pyflakes and for service execution PyYaml must be installed. Moreover, depending
on the utilized platform functions potentially also pyzbar 0.1.9, opencv-python
4.5.5.64, numpy 1.20.1, and Pillow 9.1.0 are required. For the management user
interface, Angular 12, express 4.18 and cors 2.8 are required. Below we indicate an example
installation of the requirements for Python 3.9 with recommended minimum versions of the
dependencies (which may differ on your system).

2. On server and devices: Obtain the IIP-Ecosphere platform install package. Snapshots can be
obtained from SSE Jenkins for Windows130, Linux131 or from GitHub. The install package for the
actual release can be obtained from GitHub. For the further steps, we assume that the install
package is stored in the actual directory.

3. On server and devices: Unpack the install package. Watch out that no special characters or
whitespaces are in your path to the installation directory as this may cause strange effects,

particularly on Windows systems.
4. On the server: Edit132 the example configuration file TechnicalSetup.ivml in

src/main/easy so that your local IP address is used. In this release, the devices are not listed
in the configuration, i.e., search for 147.172.178.145 and replace this IP by the IP of your server
machine133. You may perform more changes, but this requires background knowledge from
Section 6 on the platform configuration model. One particular setting to be considered is the
globalHost for data transport, the global communication broker. In the example, this shall
be automatically set through the global variable platformServer to ease the setup for a
single server installation, but in your settings also different servers for different central services
(AAS, monitoring, broker, etc.) may be set up, which then require a more individualized setup.
Currently, the selection of code artifacts is restricted to the Maven servers used for

129 https://docs.docker.com/engine/install/linux-postinstall/
130 https://jenkins-2.sse.uni-hildesheim.de/view/IIP-
Ecosphere/job/IIP_Install/lastSuccessfulBuild/artifact/install.zip
131 https://jenkins-2.sse.uni-hildesheim.de/view/IIP-
Ecosphere/job/IIP_Install/lastSuccessfulBuild/artifact/install.tar.gz
132 For the next versions of the platform, we plan to provide UI support for the initial setup as well as the design
of applications.
133 For this release we suggest not using HTTPS as schema or a non-empty endpoint path for the AAS server.
Also for VAB, HTTPS is currently disabled. We plan to add certificate support in one of the next releases.

~$ mkdir Install
~$ cd Install
~/Install$ tar xzpvf ../Install.tar.gz

~$ sudo usermod -aG docker $USER

~$ python3 -m pip install pyzbar==0.1.9
~$ python3 -m pip install opencv-python==4.5.5.64
~$ python3 -m pip install numpy==1.20.1
~$ python3 -m pip install Pillow==9.1.0

https://docs.docker.com/engine/install/linux-postinstall/
https://jenkins-2.sse.uni-hildesheim.de/view/IIP-Ecosphere/job/IIP_Install/lastSuccessfulBuild/artifact/install.zip
https://jenkins-2.sse.uni-hildesheim.de/view/IIP-Ecosphere/job/IIP_Install/lastSuccessfulBuild/artifact/install.zip
https://jenkins-2.sse.uni-hildesheim.de/view/IIP-Ecosphere/job/IIP_Install/lastSuccessfulBuild/artifact/install.tar.gz
https://jenkins-2.sse.uni-hildesheim.de/view/IIP-Ecosphere/job/IIP_Install/lastSuccessfulBuild/artifact/install.tar.gz

IIP-Ecosphere Platform Handbook
189

development, i.e., further artifacts cannot be obtained from further repositories, e.g., the
future platform service store. This will be targeted by one of the next releases.
Depending on the Java version, various settings to open the Java module system may be
needed. Currently, these settings are fixed in IIPEcosphere.ivml in the variable javaOpts
and can be adjusted before generation if needed. Pragmatically, you may also alter the
generated shell scripts (cf. steps 5 and 7)134.

5. On the server, decide about the broker. You may install one for a certain protocol and adjust
the configuration (step 5) accordingly. By default, the configuration goes for an AMQP broker
on port 8883. The platform will also instantiate an example broker135, i.e., if you want to rely
on that broker, there is nothing to do for this step. As alternatives, you can also rely on, e.g., a
broker that is shipped with your operating system or with a device.

6. On the server: Instantiate the platform using

If you already instantiated an older (snapshot) version of the platform, please advise maven to
update its artifacts, i.e., add the parameter -U in run mvn -U install. This command
executes the PlatformInstantiator mentioned in Section 3.11 through Maven, passing it
three parameters (implicitly given in the pom.xml file), namely the name of the model to
instantiate (PlatformConfiguration), the relative folder where the model is located
(src/main/easy) and the folder where to store the instantiated artifacts (the relative folder
gen). Please note that this may fail if your modifications to the configuration file are
syntactically or semantically incorrect. Alternatively, you can check out the full code from
GitHub and run the PlatformInstantiator from your IDE or force maven to copy all
dependencies into a folder and run Java manually on the command line. As several files and
folders are produced by the instantiation process, also a README.txt file is generated, which
provides some explanation on the individual files and folders. Among them are the platform
server (platform, plJars, platform.*), the ECS runtime (ecsRuntime, ecsJars, ecs.*)
and the service manager (serviceMgr, svcJar, serviceMgr.*). Moreover, to enable the
execution on devices with lower resources, the instantiation creates an installation variant
containing ECS runtime and service manager running in the same process (ecsServiceMgr,
ecsSvcJars, ecsServiceManager.*). In this variant, no container manager is installed
(AAS container operations do not exist, executing respective commands through the CLI will
lead to an error) and if a container is used as execution environment, the services must run
within the same container.

7. On the server: Copy the created artifacts in gen (broker/*, ecsJars/*, ecs.sh,
svcJars/*, serviceMgr.sh, SimpleMeshTestingApp-0.1.0-SNAPSHOT-bin.jar) to
the respective devices (you may leave this step out if server and devices are the same physical
machine). For each artifact, the instantiation creates a folder with all dependencies and the
respective startup script. In future versions of the platform, this step will be taken over by the
device management, the automated container creation and the distribution of containers by
the platform.

134 Please note that generated files may be overridden when step 6 is executed again.
135 For now, the installation package still contains an example AMQP broker, which may be removed in the
future. If you want to use that broker, type cd broker; mvn package; cd.. to prepare it for execution.

~/Install$ mvn install

190
IIP-Ecosphere Platform Handbook

8. On server (and depending on your decision in Step 5): Install and start a protocol broker/server
instance. If you decided in Step 6 for the broker instantiated by IIP-Ecosphere, run it in an own
shell by

9. Start the platform components:
• On the server: Start the platform server(s) component through the generated

platform.sh/bat in the gen folder. If you run all processes from the console as
explained in this section, this requires a separate shell for platform, ECS Runtime, service
manager and CLI as the processes run intentionally endless (or you start them in
parallel/background).

• Currently, by default, no explicit on/offboarding of devices is needed. If explicit
onboarding is required, call the respective ecs or ecsServiceMgr script with parameter
onboard.

• On the devices (if desirable also on the server): Start the broker for local communications,
the ECS runtime (ecs.sh/bat) and, finally, the service manager (serviceMgr.sh/bat)
through their startup scripts136.

10. On server (if all files are available this can also be done on a device): Run cli.sh. An example
interactive execution trace was already shown in Section 3.13 in Figure 52. For deploying
services, the created application artifact must be on the device running the service manager.
Add the artifact to the service manager via the cli (through a local file URL on that device)
and start the services. Please note that artifacts and containers are added through their URI,
whereby local URIs may differ from system to system137, e.g.,

• Windows: file:///C:/.../SimpleMeshTestingApp-bin.jar
• Linux: file:/home/ecouser/SimpleMeshTestingApp-bin.jar
• Service container: file:/apps/SimpleMeshTestingApp-bin.jar

11. On server and devices: To avoid timeouts, a shutdown shall happen in the opposite sequence,
i.e., services, service manager, container manager, platform, brokers. Currently, by default, no
explicit on/offboarding of devices is needed. If explicit onboarding is required, call the
respective ecs or ecsServiceMgr script with the parameter offboard.

If you want to exercise the full cycle, create a Docker container with the service manager and the
application artifact first and copy the container to the device running the ECS runtime138. It is important
to emphasize that these steps shall be automated in future releases.

Copy the container folder from the installation package to your “device”. Copy/move the artifacts
from step 7 also into the container folder and execute there

136 If you like to take a look into the AAS, open the repository URL
http://127.0.0.1:9002/registry/api/v1/registry on the server (please adjust the host/port according to your
configuration) and follow the links into the desired AAS submodel.
137 The name of the generated service artifacts for Spring changed and is now qualified with the classifier bin.
This allows for testing the generated classes prior to any packaging format, which may result in an executable
JAR rather than a JAR for testing.
138 We provide scripts for creating, saving and running the container as part of the install package.

~/Install$ docker build -t iip/simplemesh:0.3
 -f SimpleMeshTestingApp/Dockerfile .
~/Install$ docker save iip/simplemesh:0.3 | gzip
 > SimpleMeshTestingApp/simplemesh-0.3.tar.gz

~/Install$ cd gen/broker
~/Install/gen/broker$./broker.sh

http://127.0.0.1:9002/registry/api/v1/registry

IIP-Ecosphere Platform Handbook
191

For convenience, both commands are available as createAppContainer.sh and
saveAppContainer.sh in the install package. At a glance, the second step may appear superfluous,
but it is required for the deployment and execution of the container through the ECS runtime. Please
take care that the tag iip/simplemesh and the file name simplemesh-0.3.tar.gz are the
same139 as in the container descriptor SimpleMeshTestingApp/image-info.yml. Add and start
the container (similar as described for the services above) through the platform command line
interface before starting the services in the container.

With a running platform server and a running ECS runtime, you may also start the container manually.
This would then require setting the AAS implementation server port correctly as stated in the container
descriptor, i.e., --network=host --expose port -e “IIP_PORT=port”. If feasible, you may
use the default port 9000 and use --expose 9000 or more generically -P as parameters. An example
script is included in the install package as runAppContainer.sh.

If you also want to containerize the ECS runtime (one of the possible edge device installations), ensure
that the folder container/EcsRuntime is on the “device”. For simplicity and to save resources, we
map the SimpleMeshTestingApp folder as volume into the ECS container (mount point
/SimpleMeshTestingApp).

Akin to the app container, both steps are available as respective scripts in the install package. Before
running the ECS container, it is important that the app container has been created and stored. As
administrative operations for installing Docker into the container are executed, Docker may issue
certain warnings during the creation of the container. The default port for the ECS Runtime AAS
implementation server in this Dockerfile is 9000.

For a permanent installation, the instantiation process also generates service specifications for Linux
systemd, for both, integrated installation of platform services, ECS runtime and service manager on a
single machine/container and additional no-dependencies service specifications for device/container
installation. The generation of these system service descriptors and their execution is based on several
settings in the platform configuration (mentioned below), in particular, as Linux systemd does not take
system environment variables into account. These system service descriptors assume an installation
of the generated jars (including containing directory, e.g., plJars) in the instDir (by default
/opt/iip). For execution, the Java specified in javaExe (default /opt/iip/java, intended to be a
link to the actual JVM) is used. After completion of the startup process, the respective platform
executable creates a file containing the process identification (PID) in the pidDir (by default /run for
Linux and the temporary folder for Windows). These PID files are, e.g., considered by the startup
scripts of the generated containers.

8.5 Pre-build Docker container images
To ease initial steps with the IIP-Ecosphere platform and to avoid carrying out all the steps described
in the last section, we offer two pre-packaged Docker containers on Docker Hub140,

1. A container with the platform parts (AAS server, the ECS Runtime, the Service Manager) and a
simple example service artifact.

139 The version number may differ but shall be the same as in the container descriptor.
140 https://hub.docker.com/r/iipecosphere/platform

~/Install$ docker build -t iip/ecsruntime:0.3 -f EcsRuntime/Dockerfile .
~/Install$ docker run -v /var/run/docker.sock:/var/run/docker.sock -P --network=host
 --mount type=bind,source="$(pwd)"/SimpleMeshTestingApp,target=/SimpleMeshTestingApp
 -it iip/ecsruntime:0.3

https://hub.docker.com/r/iipecosphere/platform

192
IIP-Ecosphere Platform Handbook

2. A container with the Command Line Interface.

To experiment with the containers, use the following commands.

Create a network

and start the platform parts:

Intentionally, the command line interface runs in a separate container, i.e., execute

for the Command Line Interface. An example service artifact is available in the platform container
also acting as device under the URI file:/device/SimpleMeshTestingApp-0.1.0-
SNAPSHOT.jar.

The pre-build container allocates the following ports:

• Port `8883` hosts the AMQP broker.
• Port `9001` serves the Platform Asset Administration Shell (AAS).
• Port `9002` provides access to the AAS registry.
• Port `9090` and `9091` hosts monitoring.
• Port `4200` provides UI.

If you want to explore the AAS, open an HTTP browser on port 9002, select the sub-model that you
are interested in and click on the link of that submodel, which directs you to an URL on port 9001.

8.6 Considerations for a Distributed Server Installation
As mentioned in Section 8.4, a distributed setup with multiple servers acting in different roles may
require a more individualized configuration. In Table 29, we summarize the configuration variables
that are of particular importance for such a setup.

Table 29: Summary of configuration variables for a distributed server installation.

IVML Variable Semantics Default
transport.globalHost Global communication broker

(depending on transport
protocol) for inter-device
communication, monitoring,
tracing, etc. Default port is 8883,
may differ depending on
transport protocol.

localhost

transport.localPort Network port for local broker
instances, i.e., brokers for intra-
device data transport.

transport.port

transport.localEcsPort Network port of local broker
instances (in ECS-runtime
container). Must differ from
global transport port if ECS-
runtime/service manager shall

8889

~$ docker network create --subnet=172.19.0.0/16 platform

~$ docker run --network platform --ip 172.19.0.22 -p 9001:9001
 -p 9002:9002 -p 8883:8883 -p 9090:9090 -p 9091:9091 -p
4200:4200 iipecosphere/platform:platform_all.latest

~$ docker run -i --network platform iipecosphere/platform:cli.latest

IIP-Ecosphere Platform Handbook
193

IVML Variable Semantics Default
be executed on central
servers/broker.

aasServer.host Global AAS server host name as
used by all devices.

aasServer.serverHost Replaces aasServer.host on the
server if the AAS server process
shall listen to a dedicated
network.

-

aasRegistryServer.host
aasRegistryServer.serverHost

Akin to aasServer, but for the
AAS registry.

platformMonitoring.host Server hosting the central
platform monitoring, by default
Prometheus. May be pre-
installed.

127.0.0.1

platformMonitoring.exporterHost Server hosting the IIP-
Ecosphere-to-Prometheus data
exporter.

127.0.0.1

platformMonitoring.alertMgrHost Server running the Prometheus
alert Manager. May be pre-
installed.

127.0.0.1

managementUI.port Port of the platform
management UI. Currently
started on same server as
aasServer.

4200

8.7 Environment for Testing and Evaluating the Platform/Applications
With all the features and functionalities provided by the platform and in addition to that, the
developed applications and services added to the platform, there is a need to test the platform and
the (distributed) applications to make sure that they operate without errors. Moreover, besides
validation, it is interesting to evaluate the platform and applications for their runtime properties, e.g.,
to determine memory consumption, CPU usage, performance and residual capacities for the evolution
of the platform as well as individual applications. As the whole cycle of configuring, installing, deploying
starting, evaluating, stopping, and uninstalling applications as well as platform components is not
trivial, we aim at providing support through the Platform Evaluation and Testing Environment (PETE)
that allows for automated, distributed, monitored, and repetitive tests and evaluations.

The concept of an experimentation workbench was presented by [38]. They used Jupyter Notebook
Project141 which supports experimentation and to some limited degree replication and sharing. Jupyter
Notebook in a nutshell is an open-source web-based interactive development environment for
notebooks, code, and data. Jupyter Notebook supports over 40 programming languages like Python,
R, Julia, and Scala. Using Jupyter Notebook gives the ability to perform a stepwise execution of the
experimentation. We decided to use Jupyter Notebook Project to develop and realize the steps in the
PETE. In addition to that, there is a script that converts the Jupyter Notebook to a Python script which
can be used to do a headless execution (without using Jupyter Notebook).

141 https://jupyter.org/

https://jupyter.org/

194
IIP-Ecosphere Platform Handbook

Figure 100: The steps executed automatically by PETE

PETE covers 13 steps as shown in Figure 100: The steps. Those steps are executed automatically by
PETE. The step “Measurement / validation” (light-colored step that has “ø” sign) is not implemented
yet. The steps are:

1. Install the prerequisites: the required setup needed for the platform on the server and
devices that should be used for the test.

a. Server setup includes Java, Maven, Docker, and Python with basic dependencies.
b. Devices setup; if the device will use the generated containers, then the setup

includes just Docker. If the device will use normal scripts, then the setup includes
Java, Maven, Docker, and Python with basic dependencies.

2. Starting a private Docker registry: pull and run the registry container, then setup the private
Docker registry to not use certificates.

3. Install and Instantiate the platform:
a. For the server, it is a full installation of the platform with creating the artifacts and

containers for the applications and then adding the containers to the private Docker
registry.

b. For the device, setup Docker to use the private Docker registry to pull images (specify
that no certificate needed for pulling images from the private Docker registry).

4. Start the platform: run the platform scripts on the server (broker.sh, platform.sh, mgtUi.sh,
and monitoring.sh).

5. Onboard (join) devices:
a. Using the generated containers: pulls the respective ECS container from the private

Docker registry and runs it on the device to join the platform.
b. The local installation way using scripts: download and run the respective scripts on

the device to join the platform (broker.sh, ecs.sh, and serviceMgr.sh).
6. Start service manager: if the device uses the generated containers then run the respective

service manager container.
7. Start the application:

a. By services functionality in the platform.
b. By deployment plan functionality in the platform.

8. Measurement and validations ø (not yet implemented).
9. Stop the applications.
10. Stop service managers: if the device uses the generated containers then stop and remove the

respective service manager container.
11. Offboard (Remove) devices:

a. Using the generated containers: Stop and remove the respective ECS container on
the device.

b. The local installation way using scripts: Stop the respective scripts on the device
(broker.sh, ecs.sh, and serviceMgr.sh).

IIP-Ecosphere Platform Handbook
195

12. Stop the platform: Stop the platform scripts on the server (broker.sh, platform.sh, mgtUi.sh,
and monitoring.sh).

13. Stop the private Docker registry: Stop and remove the registry container.

To use the PETE as stepwise execution using Jupyter Notebook or a headless execution, you should
install Jupyter Notebook. The following steps show how to install Jupyter Notebook:

1. If you don’t have Python, please install python on your machine.

2. Install Jupyter Notebook from the official website142.

To run Jupyter Notebook and to use the PETE

1. Run Jupyter Notebook, this command will show a URL to use Jupyter Notebook on any
browser.

2. Download the PETE from the IIP-Ecosphere GitHub143.
3. Copy the PETE to the Jupyter Notebook directory.
4. Open Jupyter Notebook with any browser (using the URL from the step 1) and run the test

through.

To do a headless execution of the PETE:

1. Download the PETE from the IIP-Ecosphere GitHub143.
2. Copy the PETE to the Jupyter Notebook directory.
3. Execute the following command in the PETE directory to run the test, you might check the logs

for the runs in AllLogs folder.

We are using Python scripts developed in Jupyter Notebook to manage tests. The Python scripts
generate command scripts either shell- (Linux) or batch- (Windows) based on the operating system of
the machine that runs the Jupyter Notebook, this machine that runs the Jupyter Notebook is called the
TestManager. The generated command scripts execute the actual scripts remotely to interact with the
server and devices. Those scripts are executed remotely to do different actions like installing the
prerequisites, starting a private Docker registry etc.

The PETE consists of folders and files:

1. Setup: A file (TestSetup.yaml) used to manage the testing environment, the available and
usable machines/devices, the platform, the applications to execute, and the tests and their
properties (e.g., repetitions, testing/evaluation time, etc.).

142 https://jupyter.org/install#jupyter-notebook
143 https://github.com/iip-ecosphere/platform/tree/main/platform/tests/test.environment

~$ sudo apt install python3.9 -y

~$ pip install notebook

~$./RunTheTest.sh TestSetup.yaml

~$ jupyter notebook

https://jupyter.org/install#jupyter-notebook
https://github.com/iip-ecosphere/platform/tree/main/platform/tests/test.environment

196
IIP-Ecosphere Platform Handbook

2. Scripts: A folder that holds the shell (Linux) or batch (Windows) scripts that perform the actual
execution of the testing/evaluation process on the involved machines. There are two types of
scripts - Server and Device scripts - based on the respective role of the machine in the test.
Those scripts are moved automatically from the TestManager to the machines that are
included in the test based on the role of the machine.

3. Commands: A folder that holds scripts generated by Jupyter Python Notebook, those
commands are generated based on the operating system in the TestManager. Those
commands remotely execute the scripts moved to the machines.

4. A Jupyter Python Notebook (TestManagementScript.ipynb) that reads the
TestSetup.yaml setup file then creates and runs the commands which in turn remotely
execute the scripts moved to the machines.

5. Logs: a folder that holds all the logs from running the commands and scripts.
6. AllLogs: a folder that holds the logs from previous runs of the test named by the date and time

of the test.
7. RunTheTest.sh: a script that run the test in headless execution (Without Jupyter Notebook):

a. Convert Jupyter Python Notebook to Python script.
b. Extract the number of repetitions of the test from TestSetup.yaml setup file and

repeat the test for the number of times defined in the TestSetup.yaml setup file.
c. Move the current logs from Logs folder to AllLogs folder and give it a name (the date

and time of the test)

IIP-Ecosphere Platform Handbook
197

9 How to apply, extend or contribute
In this section, we summarize procedures for some tasks that you may want to perform with the IIP-
Ecosphere platform. In the last sub-section (Section 9.5), we provide answers to frequently asked
questions.

9.1 Defining an own application-specific service
This is a short/modified form of the explanation in Section 6.7.

1. Adjust your platform configuration133 and define a new service (as discussed in Section 6).
2. Execute the platform instantiation with generateAppsNoDeps so that the service interfaces

artifact is generated and installed.
3. Import the generated template (gen/templates) as project into Eclipse and add only required

components as dependencies, in particular your configured application interfaces (see step 1).
Alternative and optional components such as AAS implementations or protocols may be added
as dependencies in the test scope (see architecture constraints from Section 4).

4. Realize the service, e.g., as Java class(es) in src/main/java or Python class(es) in
src/main/python/services implementing the new interface(s).

a. Java: For automated creation of instances, services must have two constructors, one
taking the serviceId and an InputStream containing the deployment descriptor
YAML as well as a no-argument fallback constructor.

b. Python: The service must be a class implementing the generated base service, which
carries the service identification, description, etc. At the end of your class, the service
must instantiate itself to register with the service environment. Further, a Maven
artifact descriptor is required to correctly package and deploy the Python sources.

For all supported programming languages, we recommend using the generated application
templates, which contain programming frames for Java and Python services, frames for Java
and Python tests, testing resources, an example identity store file, required packaging
descriptors, and a matching build process (see also Section 6.8).

5. Modify the platform configuration by adding the artifact specification of your service
implementation artifact to the configuration of your service(s).

6. Run the platform instantiation with generateApps so that the complete artifact is built.
7. Deploy the artifacts to your installation devices, start the platform and try out your service as

discussed in Section 8.4.
8. Let IIP-Ecosphere know about your work. In case of a potential open source component, please

consider contributing it to IIP-Ecosphere.

9.2 Defining an AAS for a device
Nowadays, AAS is still a rather new approach and devices may not be equipped with their own AAS,
although first experimental device plugins do exist, e.g., for Phoenix Contact PLCnext. Currently, as
stated in Section 3.8.1, the IIP-Ecosphere allows for two ways of defining an own AAS, in particular to
provide a nameplate with device/vendor information or, if desired, a specification of the provided
device services.

1. The first approach is to pragmatically state the AAS in a specific Yaml-Format, which is turned
into an AAS.

2. The second approach is to provide an AASX package, which makes up the device AAS.

Further forms, e.g., referring to an external AAS, can be realized through plugins. The AAS specification
can be:

198
IIP-Ecosphere Platform Handbook

1. Build into your instantiated platform if the respective files are stated in the resources/device
folder before starting the platform instantiation. These files are named according to the device
identification, e.g., by default the MAC-Address with all characters in capitals.

2. Loaded from the device upon startup of the respective ECS runtime. Thereby, we search for a
file called nameplate.yml or device.aasx in the installation folder of the platform
component, respectively.

The AAS must at least contain a nameplate according to [43, 2].

9.3 Implementing a monitoring/alert data service
Monitoring services are data- or application-specific Java functions that may send out an alert if specific
conditions occur. So far, the platform does not implement a generic, e.g., rule-based alert service that
can easily be reused. Basically, a monitoring/alert data service is realized as discussed for general
application-specific services in Section 9.1. However, to have access to the micrometer monitoring
structures, specific steps may be required in Step 4:

Realize the service, e.g., as Java class(es) implementing the new interface(s) and the
MonitoringService interface from services.environment. This will provide a service with
access to the MetricsProvider in case that you want to add custom metrics. Consider
Transport.sentAlert if conditions fail. In addition, the interface UpdatingMonitoringService
is automatically called regularly to update metrics if needed. As above, please consider the rules for
constructors.

9.4 Extending the platform by adding a component or a platform service
1. Make yourself familiar with the design of the respective component. Identify the interfaces to

implement, e.g., the Service interface in services.environment.
2. Create a Maven Eclipse project, use the IIP-Ecosphere platform dependencies as parent and

add only required components as dependencies. Alternative and optional components such as
AAS implementations or protocols may be added as dependencies in the test scope, not in the
(default) production scope.

3. Implement your component and test it.
4. Consider extending the platform configuration meta-model, i.e., search for the part describing

the components. In some cases, e.g., AAS protocols, this may just be an additional entry in an
enumeration. For other components, this may require a new typed IVML compound with
default values (akin to the already given compounds). For services, no changes to the meta-
model are required.

5. Adjust your platform configuration133 so that your new elements are taken up. In case of a new
enum value, use that value. In case of a new compound, replace the existing compound value
by a value of your type (providing also the respective settings in the compound value). For a
new service, add the service to the application part of your platform configuration and link it
into the service mesh (as discussed in Section 6).

6. Run the platform instantiation as discussed in Section 8.4, copy the artifacts to your installation
devices, start the platform and try out your extension.

7. Let IIP-Ecosphere know about your work. In case of a potential open source component, please
consider contributing it to IIP-Ecosphere.

IIP-Ecosphere Platform Handbook
199

9.5 Defining a new type in the configuration model
The platform configuration model is equipped with several basic types, e.g., for String, Integer
numbers144, IEC61131-3 date type or OPC UA basic types. However, we do not aim at defining an
encompassing set of types rather than mechanisms that allow for adding types later. This is in
particular true for record types, which may be highly application specific. This is also true for primitive
types. The definition of primitives applies the IVML model pattern for alternatives with detailing
properties (Figure 60).

To add a new primitive type, we explain the modifications to the configuration model for the IEC61131-
3 date-time type as illustrated in Figure 101:

1. Define a new meta-type for the type, i.e., a compound that just refines the respective base
meta type, e.g., PrimitiveType or ArrayType (lines 3-4 in Figure 101, thus suffix
TypeType).

2. Define a variable of that type and assign a default (display) name (lines 5-7 in Figure 101). This
variable will represent the type, e.g., in record fields and, thus, the variable has the name suffix
Type. The name will be used by the code generation as fallback alternative in several situations
if the behavior is not overridden.

3. Freeze the new variable in order to make it available to the code generation as it is (lines19-
13 in Figure 101).

4. Adjust the intentionally open parts of the code generation. For example, in Figure 101, we
extend the language basics for the generation of Java artifacts (lines 16-18) by a specific
method which returns the type name to be used (a basic method for DataType is defined, the
new method is selected through dynamic type dispatch). Similar, the method in lines 21-23
indicates that a type-specific conversion parameter shall be used when obtaining values from
a connector parser or writing values to a connector formatter.

5. Adjust also the code generation for Python in PythonBasics.vtl (similar to step 4).

144 Please note that IVML provides similar primitive types that we use to specify the structure of the IIP-
Ecosphere configuration model, i.e., the IVML primitive types are on meta (M2) level rather than on model
level (M1) that we target here.

200
IIP-Ecosphere Platform Handbook

Figure 101: Adding IEC 61131-3 date time to the primitive types of the configuration model

Figure 101 may create the impression that all foundational parts of the model must be modified to
introduce new data types. While this is true for default types that shall be shipped with the platform,
it is not necessarily true for data types needed by individual applications. Thanks to the dynamic
dispatch across imported IVML/VTL modules, it is possible to define the type and the overridden
functions also in their own platform configuration module, which imports the shipped platform model.

However, it is important that also certain consistency rules apply. The types declared in
JavaBasics.vtl and the names/conversion parameters declared in DataOperationBasics.vtl
must match the underlying implementation, in particular of the InputConverter and
OutputFormatter interfaces declared in the Connectors Component. There, the specified Java types
must be valid input/output parameters of operations with name infix declared in the corresponding
convName function. For the used Java types, the assumption is that types declared in the Java library
or in the imported IIP-Ecosphere components can be used. Other types must be converted by the
connector or service targeted by the code generation. Moreover, if a conversion parameter is required,
e.g., for date or time values, also the value provided by the convParam function must match. For
date/time conversion parameters, formatter strings as valid for the Java SimpleDateFormat class or
logical names as defined in the FormatCache class of the connectors component may be used, e.g.,
ISO8601 for a specific date format not supported by SimpleDateFormat. Further additions to
JavaType.vtl may be required if the type is declared as primitive type and realized in Java as object.
Then the approaches to obtain a hashcode and an equals comparison may have to be adjusted from
Java primitive types to object types.

//DataType defined, PrimitiveType refines DataType

compound IEC61131_3DateTimeTypeType refines PrimitiveType {
}
IEC61131_3DateTimeTypeType IEC61131_3DateTimeType = {

name = "IEC 61131-3 DateTime“ // display name, e.g., for UI
};

//…
freeze {

//…
IEC61131_3DateTimeType;

};

//JavaBasics.vtl: toTypeName(DataType) is defined

def String toTypeName(IEC61131_3DateTimeTypeType type) {
"java.util.Date"

}

//DataOperationBasics.vtl: convName(DataType) is defined
def String convName(IEC61131_3DateTimeTypeType type) {

"Date“ // operation name infix for toDate and fromDate
}

//DataOperationBasics.vtl: convParam(DataType) is defined

def String convParam(IEC61131_3DateTimeTypeType type) {
"'DT#'YYYY-MM-dd-HH:mm:ss.SS"

}

1
2
3
4
5
6
7
8
9
10
11
12
13

14
15
16
17
18

19
20
21
22
23
24
25
26
27
28

IIP-Ecosphere Platform Handbook
201

9.6 Using a different transport protocol
The default transport protocol that is being set up and integrated by the platform integration is AMQP.
The following describes what steps are needed to use one of the alternatives, e.g., MQTT v5.

1. Open your configuration for editing, e.g., src/main/easy/InstallTest.ivml in the
install package explained in Section 8.4.

2. Search for the variable transportProtocol and replace in the instance type the suffix
AMQP by MQTTv5 (or MQTTv3, respectively) as illustrated in Figure 102. AMQP requires an
authentication which is obtained from the identity store using the key “amqp”. In contrast,
MQTT does not require an authentication (which may differ depending on your setup). The
values for globalHost, the global communication broker (by default “localhost” or in
InstallTest.ivml explicitly set to globalhost) may be adjusted as needed.

3. Add the serviceProtocol assignment (last line of the lower box in Figure 102), which is so
far set to AMQP by default in the shipped models.

4. Re-run the instantiation of your platform to enact the changes.

Figure 102: Switching the transport protocol from AMQP to MQTT.

The platform may instantiate an example broker for the selected protocol using generateBroker on
as argument for the PlatformInstantiator. Please consider that different combinations of
brokers and protocol implementations may imply different timing behaviour, e.g., when an operation
shall be considered as failed due to timeouts. For this purpose, the transport protocol defines the
actionTimeout setting, a timeout in milliseconds when an operation is considered as failed. By
default and experience, a sufficient timeout for AMQP is 1000 ms and for MQTT 3000 ms (considered
automatically as minimum values during platform/application instantiation).

9.7 Observe or debug the data processing
To figure out what is happening in the data processing in a service mesh, of course you can add
respective logging calls to the code that implements your services. Please consider that depending on
the approach such additional calls may impact the performance (throughput), i.e., approaches to at
least disable the logging (as usually supported by logging frameworks) shall be applied. In addition, the
platform currently offers two further approaches that are generated into the service glue code that is
calling your code and, thus, also applies to connectors and services that are not realized by your
organization: Logging and tracing.

• Logging emits information via the default logging framework used in the platform as debug
information to the respective log output (as set up the console, a file, etc.).

• Command line streams (sysout) logging is like logging via a framework, but emits the
information without filtering (and specific logging formatting). This may be helpful if it is

transportProtocol = TransportProtocolAMQP {
globalHost = serverHost,
port = 8883,
security = {

authenticationKey = "amqp"
}

};

transportProtocol = TransportProtocolMQTTv5 {
globalHost = serverHost,
port = 8883
// no security by default, depends on setup

};

serviceProtocol = ServiceProtocolMQTTv5 {};

202
IIP-Ecosphere Platform Handbook

inconvenient to change the logging level of the logging framework or other software takes
control over filtering of the logs and prevents debug output.

• Tracing means sending trace entries through the trace channel (see Section 8.1) to any
interested party, in particular the hybrid TraceToAasService (see Section 3.7.3.1). The
TraceToAasService may act as a sink in a service mesh and turns in particular received
trace entries into an AAS structure. That service can be used as it is (generic service) or
customized by code to allow, e.g., for application-specific operations.

All services in the configuration model offer individual tracing settings as declared in the Services
module of the configuration model as illustrated in Figure 103.

Figure 103: Switching the transport protocol from AMQP to MQTT.

Currently, there are four modes, no tracing (NONE) as well as tracing (TRACE) and logging as debug
information via the logging framework (LOG) and logging on the system output stream (SYSOUT).
These modes can be set for data reception (traceRcv) and data sending (traceSent) of a service. If
enabled, respective code is inserted during code generation. By default, tracing is disabled on all
services, but you may activate it individually, e.g., to focus debugging on a certain part of a service
mesh.

In some cases, knowledge on the input / output of services may be sufficient to identify a problem. In
some cases, the problem is part of the routing of the data among the services. For this purpose, the
application allows to set a debug flag (Boolean debug = false), which may enable additional
logging and debugging methods of the service execution framework, e.g., for Spring Cloud Stream.

Enabling debugging requires a re-instantiation of the application. Usually, the application rather than
its interfaces is sufficient, i.e., generateApps rather than generateAppsNoDeps would be the
required option for the PlatformInstantiator (see also Section 6.2).

9.8 Frequently Asked Questions (FAQ)
In this section, we summarize some questions and issues that repeatedly occurred.

9.8.1 Error parsing HTTP header
Symptom: A part of the platform (platform server, ECS runtime, service manager or platform command
line interface) issues an exception with the following message:

org.apache.coyote.http11.AbstractHttp11Processor.process Error parsing HTTP
request header Note: further occurrences of HTTP header parsing errors will
be logged at DEBUG level.

Reason: One reason may be that a client such as the command line interface tries to access a platform
server (AAS server, registry) with an encrypted protocol (HTTPS) while the server is running a non-
encrypted protocol (HTTP).

Solution: Ensure that the certificates for client and server side do match. For this release, do not run
the platform with an encrypting protocol133.

enum TraceKind {NONE, TRACE, LOG, SYSOUT};

abstract compound ServiceBase /* … */ {
//…
TraceKind traceRcv = TraceKind::NONE;
TraceKind traceSent = TraceKind::NONE;
//…

};

IIP-Ecosphere Platform Handbook
203

9.8.2 Maven artifact missing
Symptom: While working with the platform against a release version in Maven, it appears that one of
the (non-java) artifacts is missing.

Reason: Although we carefully check the artifacts before a release, it may be the case that the
automatic deployment (script) missed some.

Solution: Please let us know about the problem via the IIP-Ecosphere website or via GitHub.

9.8.3 XXX has been compiled by a more recent version of the Java Runtime
Symptom: While executing in particular central parts of the platform, this error message/exception
may occur.

Reason: Maven tends to resolve dependencies to the most recent version using a given version
number as minimum, in particular if version ranges are allowed. As long as dependencies do not
change or the specified version range is feasible, no such problems shall occur. It may occur upon the
first resolution, i.e., during installation or when dependencies are updated, e.g., during CI when Maven
is requested to search for more recent snapshots. However, in particular for Eclipse components which
declare version ranges, compiler settings currently seem to be changed from JDK 8 to JDK 11, i.e., even
a minor version change may suddenly (upon an unintended update) lead to this failure.

Solution: As quick fix, use the JDK version indicated by the class version number to execute the
respective platform component, i.e., usually JDK 11. Alternatively, you may force Maven to download
a compatible, previous version number by creating a simple POM and deleting the failing version. In
any case, please let us know about the problem via the IIP-Ecosphere website or via GitHub. We will
try to fix the version numbers for central parts such as Eclipse components to a version range that
allows for safe execution.

9.8.4 Platform code cannot be setup in Eclipse, e.g., parent POM missing
Symptom: Your IDE reports missing Maven artifacts and shows compilation errors, in particular the
parent POM of the platform is missing. Similarly, the code style checking may fail due to missing style
definition file.

Reason: The parent POM of the platform defines the versions of non-singleton/wrapped libraries (cf.
Section 4). Without that particular POM, compilation cannot run successfully as the artifact version
numbers/ranges are missing. If you are working with a release version, it may also be the case that one
of the released artifacts is missing (cf. Section 9.8.2).

Solution: Please refer to the code setup guide in GitHub145.

9.8.5 Unknown platform coding conventions
Symptom: After a first contact with the platform code it seems that you are missing detailed
information about applied conventions on how to write code and you cannot find all conventions in
this document.

Reason: Although we tried to capture the most important conventions in this document, this
document is not intended to be a programmer’s guide, i.e., we do not necessarily repeat all coding
conventions here.

Solution: Please refer to the platform coding guidelines in GitHub118.

145 https://github.com/iip-ecosphere/platform/blob/main/platform/documentation/Guideline.pdf?raw=true

https://github.com/iip-ecosphere/platform/blob/main/platform/documentation/Guideline.pdf?raw=true

204
IIP-Ecosphere Platform Handbook

9.8.6 Maven does not find app dependencies
Symptom: When executing the platform instantiation, Maven complains about missing dependencies.

Reason: Typically, Maven dependencies for apps that ship as examples with the platform are deployed
into a public Maven repository. If Maven is executed locally, sometimes required artifacts are not
deployed correctly.

Solution: Please open a shell, navigate into the respective directory of the app or the app installations
and run mvn install.

9.8.7 Execution of application fails due to Java CompileError
Symptom: An app is built correctly but when starting it, a Java CompileError occurs and prevents
the app from starting up. The messages indicate that packages are missing that are actually in the app
fat jar.

Reason: We observed this, if app implementation projects override compile settings defined by the
platform dependencies. In more details, when you create a new app implementation project, your IDE
initially does not know that you will rely on the IIP-Ecosphere platform dependencies and may sets up
the compile settings according to your local IDE compile settings. When inheriting your POM from the
platform dependencies to rely on IIP-Ecosphere build setup, the IDE compile settings remain in your
POM and in extreme cases may conflict with class files included from the generation. This can lead to
a Java CompileError (a kind of class loading link error).

Solution: Please remove any local compiler setup from your POM files and run Maven on app
implementation and app project again.

9.8.8 Services do not start due to problems with javax.el.ExpressionFactory
Symptom: When starting services, the service manager reports class loading or instantiation problems
for javax.el.ExpressionFactory.

Reason: The Java Expression Language (EL) is required by Hibernate, which in turn is used by Spring
Boot/Cloud Stream. The EL ships in two parts, interfaces and implementation. Over the time, several
versions and implementations of both parts occurred. The Spring packages used by the platform
declare a dependency to jakarta.el, which ships both parts in the same jar (version 3.0.3). However,
due to transitive dependencies, e.g., to Tomcat from BaSyx, further versions such as tomcat-el-api
or the original javax.el may be parts of service implementation dependencies. Multiple versions of
the interfaces may, dependent on the classloading sequence, interfere and cause the described
symptom. In the generated parts, we try to prevent such overlaps, but, however, we cannot be aware
of the dependencies declared by your implementing classes.

Solution: Identify all interfaces and implementations of EL and exclude superfluous ones from the
dependencies. Alternatively, try to enforce a class loading sequence that loads jakarta.el before all
other EL interfaces and implementations. Typically, the generated parts and the default Spring service
packaging take care of that. Similarly, the ZIP service artifact including an explicit classpath file are
packaged to consider this issue, but due the use of wildcards for ZIP service artifacts not containing a
classpath file, an intended class loading sequence cannot be guaranteed then.

IIP-Ecosphere Platform Handbook
205

9.8.9 Service execution through platform fails
Symptom: When starting services through the platform, the service manager reports a state change
to FAILED instead of RUNNING.

Reason: There are multiple reasons that can cause this symptom:

1. Failures in the service code, e.g., a Python-based service cannot be started because the
required Python script is not correctly packaged or cannot be executed due to implementation
errors.

2. Communication failures as the network communication is not set up correctly, e.g., required
ports are already used or not accessible (firewall, not declared as external ports in containers,
container is not running in host network mode, etc.)

3. Timing issues in particular when services are started (the first time) in a container.

Solution: Depending on the actual reason, e.g., failures in service code must be solved or
communication failures can be addressed by correct network configuration (including the respective
settings in IIP-Ecosphere container descriptors). Timing issues often occur when the waitingTime for
the service manager is not set correctly. The default value is 1 minute, but on resource-constrained
devices, 2 or 3 minutes may be more adequate.

9.8.10 Why do platform scripts always check for recent dependency snapshots
Symptom: When starting platform services/applications or executing build commands, the Maven
build process always checks for most recent snapshots. This is time consuming and leads to long
console output.

Reason: As long as the platform is in development, it is convenient for us to have the most recent
snapshot builds available. This is in particular true for the continuous integration. Always checking for
the most recent snapshots is only enabled on the IIP-Ecosphere Maven snapshot repository, not for
other Maven repositories.

Solution: You can disable this behavior allowing Maven, e.g., to check for snapshots only once a day.
Go to your local Maven repository (usually in your home directory in the folder .m2) and modify the
settings file there. If there is no settings file, you can create a new one as shown below.

<settings xmlns=http://maven.apache.org/SETTINGS/1.1.0
 xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
 xsi:schemaLocation="http://maven.apache.org/SETTINGS/1.1.0
 http://maven.apache.org/xsd/settings-1.1.0.xsd">

 <repositories>
 <repository>
 <id>SSE</id>
 <name>SSE</name>
 <url>https://projects.sse.uni-hildesheim.de/qm/maven/</url>
 <layout>default</layout>
 <snapshots>
 <updatePolicy>daily</updatePolicy>
 </snapshots>
 </repository>
 <repositories>

</settings>

If there is already a repositories section, please add the contents for the “SSE” repository as shown
above. The important setting is the update policy, set this to daily (by default, from the platform
dependency, the value is always).

http://maven.apache.org/SETTINGS/1.1.0
http://www.w3.org/2001/XMLSchema-instance

206
IIP-Ecosphere Platform Handbook

10 Summary & Conclusions
Realizing an open (experimental) IIoT/I4.0 platform is a significant amount of work. IIP-Ecosphere is
performing that work and this whitepaper provides technical insights into the ideas, concepts,
rationales, designs and implementation state of the current release of the IIP-Ecosphere platform. The
rationale behind this document is to enable interested parties to discuss with IIP-Ecosphere on a
technical level, to try out the platform or to provide extensions. As the platform is evolving, this
document is just a snapshot in time. Future versions may include lessons learned and (reactions to)
feedback in order to improve the platform and also this document.

We discussed the technical basis for architecture modeling, the overview of the layered architecture,
the individual layers and the components they contain. For each component, we provided a
requirements analysis [based on [13, 41]) and a discussion of the realized requirements. We discussed
architectural constraints, the actual use of Asset Administration Shells (AAS), the approach to platform
configuration and instantiation, future contributions to the (external) security of the platform, selected
implementation details as well as how-to’s on applying and extending the platform.

To conclude about the actual state of the realization, we provide below some insights into selected
realization Key Performance Indicators (KPI), namely requirements fulfillment, connectors, developed
components, testing, use of open source components, and use of Asset Administration Shells.

Table 30 summarizes the discussed and realized requirements. The platform handbook of the current
version discussed more than half of the top-level and sub-requirements for the platform. As several
components are not yet realized or in realization but not part of this release, i.e., for which we do not
discuss the requirements (status), we can also conclude that about a third of the requirements are
already either completely or partially realized (and tested).

Table 30: KPI-based summary of discussed/realized requirements

KPI: Requirements (from [13], 141 top-level and 181 sub-requirements)
Discussed top-level requirements 107 (76% of all top-level requirements)
Discussed sub-requirements 126 (70% of all sub-requirements)
Completely realized requirements 119 (37% of all requirements)
Partially realized requirements 24 (10% of all requirements)

From the requirements reported above, 43% of all requirements have been realized. Regarding the
open requirements, to mention the categories with highest numbers, 33 (10% of all) are on data
storages/semantic data integration, 30 (9% of all) on data protection, 25 (8% of all) on the AI toolkit,
21 (7% of all) on virtualization/containers, 17 (5% of all) on applications and application management,
13 (4% of all) on security and 11 (3% of all) on runtime adaptation. However, it is important to mention
that also important functionality demanded by practical experience with the platform has been
realized, that is just mentioned as a few/single requirement(s), e.g., the platform management UI,
generated implementation templates, generated service tests, or the container instantiation have not
been mentioned in the requirements, e.g., the distributed testing and evaluation environment (PETE),
the example or demonstration applications.

Table 31 summarizes the number of “connectors” realized so far. In particular, various basic protocol
connectors for transport and streaming have been realized and tested. For some components, even
more connectors do exist, e.g., for Spring Cloud Stream.

Table 31: KPI-based summary of realized connectors

KPI: Connectors (*requiring application-specific extensions)
Support Layer AAS connector 3 including the default implementation for BaSyx, 1 device

measurement “connector”, 1 semantic ID resolver

IIP-Ecosphere Platform Handbook
207

KPI: Connectors (*requiring application-specific extensions)
Spring transport connectors 8 binders: RabbitMQ, Kafka, Kafka Streams, Amazon Kinesis,

Google PubSub, Solace PubSub+, Azure Event Hubs, Apache
RocketMQ

IIP-Ecosphere transport
connectors*

3 connectors: MQTT v3, MQTT v5, AMQP
5 connector binders: MQTT v3 (Paho, Hive), MQTT v5 (Paho,
Hive), AMQP

Machine/platform connectors* 4 connectors: OPC UA v1, AAS, MQTT v3, MQTT v5
Storage connectors 1 connector to Amazon S3 (local, remote; two realizations)
Sum 16 connectors realized, 8 further available
Security transport connector extensions for IDS
Data integration generic database connector
Cloud connectors semantic-based optional cloud connectors (if within

resources, AWS and Gaia-X)
Application northbound external platform connectors for data

exploration and linking of IIP-Ecosphere platform instances
Further planned 6

Table 32 summarizes the number of developed components categorized by the layers or logical
components.

Table 32: KPI-based summary of developed components

KPI: Components developed
Tooling 4 (maven plugins)
Support Layer 8 (including 2 optional component)
Transport Component 10 (including 8 optional/alternative components)
Connectors Component 5 (including 4 optional/alternative components)
Services Layer 4 (including 2 optional/alternative components)
Resources Layer 11 (including 7 alternative components)
Configuration Layer 1
Platform server(s) Component 1
Platform management UI 1
Sum 45 (including 25 optional/alternative)

Table 33 summarizes the number of test cases realized by the platform. For judging the overall number,
it is important to recall that the granularity of tests differs significantly, ranging from classical unit tests
over integration tests up to validation and instantiation of a configuration in a single test. Also, the
number of tests differs, e.g., in the Services Layer, many fine-grained monitoring tests from [3] are
defined that increase the number significantly. Moreover, the number of test cases is only one side of
the testing medal. It is also import to consider coverage metrics. The line coverage is typically between
69% and 89% except for the following: The Spring environment is currently not directly tested rather
than indirectly via the Spring service testing artifact, the test components that either consist of testing
code only or define an artifact for component testing, e.g., the service testing artifact, or that are
currently not part of the release (Kubernetes resource manager, device management, platform
monitoring).

208
IIP-Ecosphere Platform Handbook

Table 33: KPI-based summary of tests

KPI: Tests (of various granularity, from unit to integration)
Support Layer 178
Transport Component 49
Connectors Component 30
Services Layer 163
Resources Component 147
Security and Data Sharing Component 2
Reusable Intelligent Services Component 5
Configuration Component 20 + 4 (generated)
Platform server(s) Component 5
Tooling, Installation support 9
Examples 3 + 7 shell-based build and run tests
Sum 765 test cases (including 4 generated cases),

usually 48%-89% line coverage (exceptions for specific
components with acceptable reasons)

Table 34 summarizes the number of open source components used in and integrated into the platform.
It is important to mention that Table 34 just lists top-level components and not their transitive
dependencies. For example, the platform server component ultimately consists of more than 200
libraries that stem from the transitive dependencies of 9 top level component dependencies and one
auxiliary dependency.

Table 34: KPI-based summary of used open source components

KPI: Used Open Source Components (only distinct/top-level ones are listed)
Support / AAS factory connector 2 BaSyx, as alternatives Jsensors
Transport component 4 Eclipse Paho, HiveMQ client, Rabbit MQ client, Spring

Cloud Stream
4 for testing: Apache Qpid Broker J, HiveMq, Googlecode
JSON simple, Google protobuf), Moquette

Connectors component 2 Apache Milo (and as above Apache Paho)
Testing relies on the components mentioned above as well
as the server implementations provided by the used
components.

Services component 2 Micrometer (with Spring Cloud Stream), Spring Cloud
Stream Local Deployer

Resources component 10 Docker, Java Docker client, ThingsBoard, MinIO, S3Mock,
Prometheus, Prometheus Java client, Prometheus
alertmonitor, LXC, JLXD

Security and Data Protection 1 KODEX
Reusable intelligent services 3 Rapidminer RTSA, zxing, pyzbar
Configuration 1 EASy-Producer
SUM 23 in production code, 4 for testing
Planned: Data Lakes At least one feasible database
Planned: Security IDS/GAIA-X
Planned: Installation Broker like Eclipse Mosquitto or RabbitMQ
Planned: AI Flower
Further planned at least 7

IIP-Ecosphere Platform Handbook
209

We provide a coherent Asset Administration Shell for the platform on each installed device, e.g.,
through the ECS runtime installations. Thus, the number of individual AAS, which differ due to the
heterogeneity of the devices, depends on the actual on-site installation and leads to r+s+a+1 linked
AAS with r being the number of devices with ECS runtime installations, s the number of services, a the
number of applications and 1 central platform AAS in a factory (assuming a remotely deployed AAS).
From a type perspective, this leads to two AAS types, one for the ECS installations and one for the
central IT installation. Instead of accounting for that number, we count the number of sub-models
(more precisely sub-model types) contributing to the IIP-Ecosphere platform AAS.

Table 35: KPI-based summary of realized asset administration shells

KPI: Asset Administration Shells and sub-models
Support Layer 1 dynamic sub-model (types)
Transport Component 1 static sub-model (transport connectors)
Connectors Component 2 dynamic sub-models (installed connectors, active

connectors), while the active connectors change dynamically
at runtime

Services Component 3 active sub-models (services, artifacts, relations), change
dynamically at runtime, 1 AAS per service with at least 1
sub-model

Resources Component 3 active sub-models (resources, containers, device
management), 1 AAS per device with at least 1 sub-model

Configuration Component 0 not realized so far
Applications 1 AAS with 3 sub-models
Platform (via Support Layer) 1 sub-model, 1 platform AAS, 1 status/progress AAS
SUM 12 sub-models in platform production code, 1 AAS for the

platform, 1 AAS/sub-model per service, 1 AAS/sub-model
per device, 1 AAS with 3 sub-models per application

Further planned at least one per layer

One interesting KPI is the number of available services of the platform. We do not count here for
platform-integrated basic services such as the service manager, the ECS runtime or the platform
servers rather than for services that can be integrated into applications. As discussed in this handbook,
we must distinguish generic (platform-provided and application-provided) as well as application-
specific services. Table 36 summarizes the current state. Although the number of overall services may
appear to be rather low, it is important to recall that these services are generic and automatically
adjusted to the utilizing service mesh. Moreover, the RapidMiner RTSA service itself is generic and can
execute AI services defined in RapidMiner as well as service chains defined in RapidMiner studio.
While, the number of instantiable services is unlimited, we are aware of the fact that further services
shall be integrated in the future, e.g., from the IIP-Ecosphere demonstrators or the AI-accelerator.

Table 36: KPI-based summary of the provided services

KPI: Implemented (AI) services
Connectors 3 platform-provided, generic connector types with model-

based integration for OPC UA, MQTT v3 and v5. Instantiated
connectors are integrated as services into service meshes.

Security 1 platform-provided, generic anonymization and
pseudonymization service (KODEX)

AI 1 platform-provided, generic AI service (RapidMiner RTSA)
Applications 1 platform-provided, hybrid service acting as application

endpoint for mirroring application specific information into

210
IIP-Ecosphere Platform Handbook

KPI: Implemented (AI) services
the application AAS. In application-specific form, this service
may act as command endpoint.

HM’22/TddT’22 demonstrator 2 generated connectors, one re-used hybrid application AAS
service. Further, three application-specific services including
a QR-code detecting camera source, a Python AI service and
an action decider.

SUM 9 in production code, > 10 application-specific services for
testing

Further planned > 10

In summary, the second basis release accompanied by this platform handbook already realizes roughly
a third of the intended functionality and, thus, provides a good basis for platform research and case
studies. However, also basic functionality that would be desirable for certain work is still missing. Thus,
for the next release, we plan in particular for the following missing functionality:

• Improved UI including access to configuration
• Optional integration of Kubernetes based on flexible protocols
• Integration of further (AI) services.

IIP-Ecosphere Platform Handbook
211

11 References

[1] A. S. Ahmadian, Model-based privacy by design, PhD thesis, University of Koblenz and Landau,
Germany, 2020.

[2] S. Bader, H. Bedenbecker, M. Billmann, A. Bondza, B. Boss, S. Erler, K. Garrels, T. Hadlich, M.
Hankel, O. Hillermeier, M. Hoffmeister, M. Kiele-Dunsche, J. Neidig, A. Orselzki, S. Pollmeier, B.
Rauscher, W. Rieder, S. Stein, B. Waser, Generic Frame for Technical Data for Industrial
Equipment in Manufacturing (Version 1.1), Plattform Industrie 4.0, 2020,
https://www.zvei.org/fileadmin/user_upload/Presse_und_Medien/Publikationen/2020/Dezemb
er/Submodel_Templates_of_the_Asset_Administration_Shell/201117_I40_ZVEI_SG2_Submodel
_Spec_ZVEI_Technical_Data_Version_1_1.pdf

[3] M. G. Casado, Service and device monitoring on devices in IIP-Ecosphere, IT-Studienprojekt,
Universität Hildesheim, 2021

[4] M. G. Casado, H. Eichelberger, Industry 4.0 Resource Monitoring - Experiences with Micrometer
and Asset Administration Shells, Symposium on Software Performance 2021, EUR Workshop
proceedings

[5] J.-H. Cepok, Projektarbeit, Uni Hildesheim, 2023 (in preparation)

[6] J.-H. Choi, J. Park, H. D. Park, O. Min, DART: Fast and Efficient Distributed Stream Processing
Framework for Internet of Things, ETRI Journal, 39 (2), pp. 202-211, 2017

[7] R. Dautov, S. Distefano, D. Bruneo, F. Longo, G. Merlino, A. Puliafito, Pushing Intelligence to the
Edge with a Stream Processing Architecture, International Conference on Internet of Things
(iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical
and Social Computing (CPSCom) and IEEE Smart Data (SmartData), pp. 792-799, 2017

[8] H. Eichelberger, A Matter of the Mix: Integration of Compile and Runtime Variability, Workshop
on Dynamic Software Product Lines, FAS’16, 2016.

[9] H. Eichelberger, C. Qin, K. Schmid, Experiences with the Model-based Generation of Big Data
Applications, Lecture Notes in Informatics (LNI) - Datenbanksysteme für Business, Technologie
und Web (BTW '17), S. 49-56, 2017

[10] H. Eichelberger, S. El-Sharkawy, C. Kröher, K. Schmid, IVML Language specification,
http://projects.sse.uni-hildesheim.de/easy/docs-git/docRelease/ivml_spec.pdf

[11] H. Eichelberger, G. Palmer, S. Reimer, T. Trong Vu, H. Do, S. Laridi, A. Weber, C. Niederée, T.
Hildebrandt, Developing an AI-enabled IIoT platform - Lessons learned from early use case
validation, SASI4’22 @ ECSA’22, 2022

[12] H. Eichelberger, G. Palmer, C. Niederée, Developing an AI-enabled Industry 4.0 platform -
Performance experiences on deploying AI onto an industrial edge device, Symposium on
Software Performance (SSP'22), 2022

[13] H. Eichelberger, C. Sauer, A. S. Ahmadian, M. Schicktanz, A. Dewes, G. Palmer, C. Niederée, IIP-
Ecosphere Platform – Requirements (Functional and Quality View), Version 1.0, March 2021, IIP-
2021/02-en, DOI: 10.5281/zenodo.4485774, 2021

[14] H. Eichelberger, C. Qin, R. Sizonenko, K. Schmid, Using IVML to Model the Topology of Big Data
Processing Pipelines In Proceedings of the International Systems and Software Product Line
Conference SPLC’16, p. 204 – 208, 2016.

[15] H. Eichelberger, K. Schmid, EASy Variability Instantiation Language: Language Specification,
http://projects.sse.uni-hildesheim.de/easy/docs-git/docRelease/vil_spec.pdf

https://www.zvei.org/fileadmin/user_upload/Presse_und_Medien/Publikationen/2020/Dezember/Submodel_Templates_of_the_Asset_Administration_Shell/201117_I40_ZVEI_SG2_Submodel_Spec_ZVEI_Technical_Data_Version_1_1.pdf
https://www.zvei.org/fileadmin/user_upload/Presse_und_Medien/Publikationen/2020/Dezember/Submodel_Templates_of_the_Asset_Administration_Shell/201117_I40_ZVEI_SG2_Submodel_Spec_ZVEI_Technical_Data_Version_1_1.pdf
https://www.zvei.org/fileadmin/user_upload/Presse_und_Medien/Publikationen/2020/Dezember/Submodel_Templates_of_the_Asset_Administration_Shell/201117_I40_ZVEI_SG2_Submodel_Spec_ZVEI_Technical_Data_Version_1_1.pdf
http://projects.sse.uni-hildesheim.de/easy/docs-git/docRelease/ivml_spec.pdf
http://projects.sse.uni-hildesheim.de/easy/docs-git/docRelease/vil_spec.pdf

212
IIP-Ecosphere Platform Handbook

[16] X. Fu, T. Ghaffar, J. C. Davis, D. Lee, EDGEWISE: A Better Stream Processing Engine for the Edge,
USENIX Annual Technical Conference, pp. 929-945, 2019

[17] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of Reusable Object-
Oriented Software, Addison-Wesley, 1995

[18] Ø. Haugen, Common Variability Language (CVL) – OMG Revised Submission, OMG document
ad/2012-08-05, 2012

[19] C. Hochreiner, M. Vögler, P. Waibel, S. Dustdar, VISP: An Ecosystem for Elastic Data Stream
Processing for the Internet of Things, pp. 19-29, EDOC’16, 2016

[20] C. Hochreiner, M. Vögler, S. Schulte, S. Dustdar, Elastic Stream Processing for the Internet of
Things, CLOUD, 2016

[21] J.-H. Hoepman, Privacy design strategies - (Extended Abstract). In ICT Systems Security and Privacy
Protection - IFIP TC 11 International Conference (SEC’14), pages 446–459, 2014.

[22] International Data Spaces, IDS reference architecture model version 3.0,
https://internationaldataspaces.org/22m-3-0/

[23] The Industrial Internet Reference Architecture Technical Report,
https://www.iiconsortium.org/pdf/IIRA-v1.9.pdf

[24] J. Jürjens, Secure Systems Development with UML, Springer, 2005

[25] H. Koziolek, S. Grüner, J. Rückert, A Comparison of MQTT Brokers for Distributed IoT Edge
Computing, ECSA, 2020

[26] LNI 4.0 Testbed Edge Configuration – Usage View, https://www.plattform-
i40.de/PI40/Redaktion/EN/Downloads/Publikation/LNI4.0-Testbed-Edge-
Configuration_UsageViewEN.pdf

[27] E. Maleki, F. Belkadi, N. Boli, J. van der B. Zwaag, K. Alexopoulos, S. Koukas, M. Marin-Perianu, A.
Bernard, D. Mourtzis, Ontology-Based Framework Enabling Smart Product-Service Systems:
Application of Sensing Systems for Machine Health Monitoring, IEEE Internet of Things Journal, 5
(6), pp. 4496-4505, 2018

[28] N. Martz, J. Warren, Big Data - Principles and best practices of scalable realtime data systems,
Manning, 2015

[29] D. O’Keeffe, T. Salonidis, P. Pietzuch, Frontier: Resilient Edge Processing for the Internet of
Things, VLDB Endowment, 11 (10), pp. 1178-1191, 2018

[30] OMG, Unified Modeling Language, Version 2.5.1, https://www.omg.org/spec/UML/About-UML/

[31] D. Pidun, Geräteverwaltung von IoT-Geräten für die IIP-Ecosphere Plattform, BSc-
Abschlussarbeit, Universität Hildesheim, 2021

[32] Plattform Industrie 4.0, Die Verwaltungsschale im Detail, 2019, https://www.plattform-
i40.de/PI40/Redaktion/DE/Downloads/Publikation/verwaltungsschale-im-detail-
pr%C3%A4sentation.html

[33] Reference Architecture Model Industrie 4.0, https://www.plattform-
i40.de/PI40/Redaktion/EN/Downloads/Publikation/rami40-an-introduction.html

[34] B. Satzger, W. Hummer, P. Leitner, S. Dustdar, Esc: Towards an Elastic Stream Computing
Platform for the Cloud, IEEE International Conference on Cloud Computing, pp. 348-355, 2011

[35] C. Sauer, H. Eichelberger, A. Ahmadian, A. Dewes, J. Jürjens, Aktuelle Industrie 4.0 Plattformen –
Eine Übersicht, IIP-Ecosphere Whitepaper IIP-2020/001, 2020, DOI: 10.5281/zenodo.4485756,
2020

https://internationaldataspaces.org/ids-ram-3-0/
https://www.iiconsortium.org/pdf/IIRA-v1.9.pdf
https://www.plattform-i40.de/PI40/Redaktion/EN/Downloads/Publikation/LNI4.0-Testbed-Edge-Configuration_UsageViewEN.pdf?__blob=publicationFile&v=5
https://www.plattform-i40.de/PI40/Redaktion/EN/Downloads/Publikation/LNI4.0-Testbed-Edge-Configuration_UsageViewEN.pdf?__blob=publicationFile&v=5
https://www.plattform-i40.de/PI40/Redaktion/EN/Downloads/Publikation/LNI4.0-Testbed-Edge-Configuration_UsageViewEN.pdf?__blob=publicationFile&v=5
https://www.omg.org/spec/UML/About-UML/
https://www.plattform-i40.de/PI40/Redaktion/DE/Downloads/Publikation/verwaltungsschale-im-detail-pr%C3%A4sentation.html
https://www.plattform-i40.de/PI40/Redaktion/DE/Downloads/Publikation/verwaltungsschale-im-detail-pr%C3%A4sentation.html
https://www.plattform-i40.de/PI40/Redaktion/DE/Downloads/Publikation/verwaltungsschale-im-detail-pr%C3%A4sentation.html
https://www.plattform-i40.de/PI40/Redaktion/EN/Downloads/Publikation/rami40-an-introduction.html
https://www.plattform-i40.de/PI40/Redaktion/EN/Downloads/Publikation/rami40-an-introduction.html

IIP-Ecosphere Platform Handbook
213

[36] K. Schmid, H. Eichelberger, EASy-Producer: From Product Lines to Variability-rich Software
Ecosystems, SPLC’ 15, 2015

[37] K. Schmid, S. El-Sharkawy, C. Kröher, Improving Software Engineering Research through
Experimentation Workbenches. arXiv e-prints, arXiv-2110, 2021

[38] L. Schulz, Container-Virtualisierung mit LXC in der IIP-Ecosphere-Plattform, BSc Arbeit, Uni
Hildesheim, 2023

[39] M. Staciwa, Experimentelles Container-Deployment auf Industrie 4.0 Geräte, Projektarbeit, Uni
Hildesheim, 2020

[40] M. Staciwa, Modell-basierte Erstellung von containervirtualisierter Industrie 4.0 Anwendungen
am Beispiel der IIP-Ecosphere-Plattform, Bachelorarbeit, Uni Hildesheim, 2022

[41] H. Stichweh, C. Sauer, H. Eichelberger, IIP-Ecosphere Platform Requirements (Usage View),
Version 1.0, Januar 2021, IIP-2021/001, DOI: 10.5281/zenodo.4485801, 2021

[42] F. van der Linden, K. Schmid, E. Rommes, Software Product Lines in Action - The Best Industrial
Practice in Product Line Engineering, Springer, 2007

[43] ZVEI, Specification Submodel Templates of the Asset Administration Shell – ZVEI Digital
Nameplate for industrial equipment (Version 1.0), https://www.plattform-
i40.de/IP/Redaktion/DE/Downloads/Publikation/Submodel_Templates-
Asset_Administration_Shell-digital_nameplate.html

[44] T. Ziadi, L. Hélouët, J.-M. Jézéquel, Towards a UML profile for Software Product Lines, Intl.
Workshop on Software Product-Family Engineering, 2003

https://www.plattform-i40.de/IP/Redaktion/DE/Downloads/Publikation/Submodel_Templates-Asset_Administration_Shell-digital_nameplate.html
https://www.plattform-i40.de/IP/Redaktion/DE/Downloads/Publikation/Submodel_Templates-Asset_Administration_Shell-digital_nameplate.html
https://www.plattform-i40.de/IP/Redaktion/DE/Downloads/Publikation/Submodel_Templates-Asset_Administration_Shell-digital_nameplate.html

214
IIP-Ecosphere Platform Handbook

Über die Autoren

Dr. Holger Eichelberger is deputy head of the Software Systems Engineering
group at the Institute of Computer Science at the University of Hildesheim. He
conducts research in the areas of software product lines, model-based
engineering, performance monitoring, and performance analysis. In particular,
he is interested in the integration of these areas to create adaptive software
systems. In IIP-Ecosphere he leads the think tank "Platforms" as well as the AI
Accelerator. He studied computer science at the University of Würzburg, where
he received his PhD on the automatic layout of UML diagrams.
Fotograf: Daniel Kunzfeld

Dr. Amir Shayan Ahmadian is a postdoctoral researcher at the Faculty of
Computer Science at the University of Koblenz-Landau. His research interests
focus on the challenges of designing and implementing secure and privacy-
friendly software systems as well as on the current developments in Industry
4.0. He studied computer science at the University of Paderborn and received
his PhD in computer science from the University of Koblenz-Landau. During his
doctorate, he developed a methodology to operationalize the principle of "data
protection through technology design".

Dr. Andreas Dewes holds a PhD in experimental quantum computing from the
Sorbonne University of Paris and the French Nuclear Energy Agency (CEA). He
has founded several software companies and is the CEO of KIProtect GmbH,
which develops advanced technical software solutions for data protection and
data security. Within IIP-Ecosphere, KIProtect GmbH is developing a solution for
the secure and privacy-compliant use of industrial & IoT data together with the
consortium project partners and associated companies.

Marco Ehl is a research associate in the Software Engineering working group
under the direction of Prof. Dr. Jan Jürjens at the Institute for Software
Technology at the University of Koblenz-Landau. He researches model-driven
methods for software development. His focus is on the analysis and
explainability of automated production systems. He obtained his Master of
Science degree in computer science at the University of Koblenz-Landau on the
topic of model-based monitoring of integrated state machines.

Ahmad Alamoush is a research associate in the Software Systems Engineering
group at the Institute of Computer Science at the University of Hildesheim. He
conducts research on deployment of containerized applications and the
adaptation of the deployment at runtime. He obtained his Master of Science
degree in computer science at the University of Jordan on the topic of the 0-1
knapsack problem on chained-cubic tree interconnection network.

IIP-Ecosphere Platform Handbook
215

Monika Staciwa studies computer science at the University of Hildesheim. In
IIP-Ecosphere, Monika works in particular on container management,
(virtualized) asset administration shells, the python service environment and
(automatic) creation of containers.

Miguel Gómez Casado studies computer science at the university of Valladolid.
During his ERASMUS+ visit at the University of Hildesheim, Miguel worked on
service monitoring, representing monitoring information in and querying
monitoring information from asset administration shells.

	1 Introduction
	1.1 Motivation and Goals
	1.2 Interaction with other initiatives
	1.3 Structure of the document

	2 Tooling and Basic Technical Decisions
	3 Architecture
	3.1 Overview
	3.1.1 Relation to Reference Architectures
	3.1.2 Stream (Data) Processing
	3.1.3 Asset Administration Shells
	3.1.4 Component Interaction Overview
	3.1.5 Virtual Character of the Platform

	3.2 Development Streams
	3.3 Overall Requirements
	3.4 UML Profiles
	3.4.1 IIP-Ecosphere Profile
	3.4.2 UMLSec Profile
	3.4.2.1 Secure Links Check
	3.4.2.2 Secure Dependency Check

	3.4.3 Security and Privacy Profile
	3.4.4 IoT Component Security and Privacy Profile

	3.5 Support Layer
	3.5.1 Asset Administration Shell Abstraction
	3.5.2 Network Management Support
	3.5.3 Lifecycle Support
	3.5.4 System-level Monitoring Support
	3.5.5 Identity Support
	3.5.6 Resource Support
	3.5.7 Semantic Id Resolution Support
	3.5.8 Task Tracking Support
	3.5.9 AAS Creation and Usage Pattern

	3.6 Transport and Connection Layer
	3.6.1 Requirements
	3.6.2 Transport Component
	3.6.2.1 Related Approaches
	3.6.2.2 Design
	3.6.2.3 Validation and Evaluation

	3.6.3 Connectors Component
	3.6.3.1 Related approaches
	3.6.3.2 Design
	3.6.3.3 Validation

	3.6.4 Requirements Discussion

	3.7 Services Layer
	3.7.1 Terminology and Background
	3.7.2 Requirements
	3.7.3 Service Environments
	3.7.3.1 The Java Service Environment
	3.7.3.2 The Python Service Environment
	3.7.3.3 Validation

	3.7.4 Service Control and Management
	3.7.5 Requirements Discussion

	3.8 Resources and Monitoring Layer
	3.8.1 ECS runtime
	3.8.2 Device/Resource Management
	3.8.3 Monitoring

	3.9 Storage, Security and Data Protection Layer
	3.9.1 KODEX platform service
	3.9.2 Data lakes / Data bases

	3.10 Reusable Intelligent Services Layer
	3.10.1 Specific Requirements
	3.10.2 Data Processing Function Library
	3.10.3 RapidMiner RTSA service
	3.10.4 Flower-based Federated Learning
	3.10.5 Service candidates ahead
	3.10.6 IIP-Ecosphere AI Software Service Concept
	3.10.7 Requirements Discussion

	3.11 Configuration Layer
	3.12 Application Layer
	3.13 Platform Server(s)
	3.14 Management User Interface
	3.15 Test support

	4 Architectural Constraints
	5 Asset Administration Shells
	6 Platform Configuration Model
	6.1 Modeling Patterns
	6.2 Configuration Model Structure
	6.3 Support for Standardized Connectors/Protocols
	6.4 Platform Instantiation Process
	6.5 Container Instantiation
	6.6 Example Applications
	6.7 Creating an Application
	6.8 Project Structures
	6.9 Default Build Sequences
	6.10 Service Realization Rules and Considerations

	7 Platform Security and Data Protection
	7.1 Internal Security and Security/Privacy Analysis
	7.2 Support of the Concepts of the IoT Component Profile in actual Platforms
	7.2.1 Using the Profile to annotate a system model with proper mechanisms
	7.2.2 Towards an automated analysis to verify required security levels

	7.3 External Security

	8 Implementation
	8.1 Implementation decisions
	8.2 Obtaining the IIP-Ecosphere platform
	8.3 Compiling the IIP-Ecosphere platform
	8.4 Installing and using the IIP-Ecosphere platform
	8.5 Pre-build Docker container images
	8.6 Considerations for a Distributed Server Installation
	8.7 Environment for Testing and Evaluating the Platform/Applications

	9 How to apply, extend or contribute
	9.1 Defining an own application-specific service
	9.2 Defining an AAS for a device
	9.3 Implementing a monitoring/alert data service
	9.4 Extending the platform by adding a component or a platform service
	9.5 Defining a new type in the configuration model
	9.6 Using a different transport protocol
	9.7 Observe or debug the data processing
	9.8 Frequently Asked Questions (FAQ)
	9.8.1 Error parsing HTTP header
	9.8.2 Maven artifact missing
	9.8.3 XXX has been compiled by a more recent version of the Java Runtime
	9.8.4 Platform code cannot be setup in Eclipse, e.g., parent POM missing
	9.8.5 Unknown platform coding conventions
	9.8.6 Maven does not find app dependencies
	9.8.7 Execution of application fails due to Java CompileError
	9.8.8 Services do not start due to problems with javax.el.ExpressionFactory
	9.8.9 Service execution through platform fails
	9.8.10 Why do platform scripts always check for recent dependency snapshots

	10 Summary & Conclusions
	11 References

