
Adapting Kubernetes to IIoT and Industry 4.0 protocols -

An initial performance analysis∗

Ahmad Alamoush, Holger Eichelberger
{alamoush,eichelberger}@sse.uni-hildesheim.de
University of Hildesheim, Hildesheim, Germany

Abstract

Kubernetes (K8s) is one of the most frequently used
container orchestration tools offering, as it offers a
rich set of functions to manage containerized ap-
plications, it is customizable and extensible. Con-
tainer virtualization of applications and their orches-
tration on heterogeneous resources including edge de-
vices is a recent trend in Industrial Internet of Things
(IIoT)/Industry 4.0, where K8s is also applied. How-
ever, IIoT/Industry 4.0 is a domain with high stan-
dardization requirements. Besides equipment stan-
dards, e.g., for electrical control cabinets, there are
also demands to standardize network protocols, data
formats or information models. Such standards can
foster interoperability and reduce complexity or de-
ployment/integration costs. Here, the proprietary
communication protocol of K8s and similar orches-
trators can be an obstacle for adoption.

To explore this situation from an interoperability
and integration perspective, we present in this paper
an approach to replace the communication protocol
of K8s without modifying its code base. We show
by an experiment that applying our approach with
three current forms of IIoT communication, namely
Message Queuing Telemetry Transport (MQTT), Ad-
vanced Message Queuing Protocol (AMQP), and As-
set Administration Shell (AAS), does not significantly
affect the validity and the performance of K8s.

1 Introduction

Virtualization and containerization technologies show
high potential in the field of IIoT, but a widespread
use of containerized applications requires tools to
manage containers, scale them up or down, to per-
form rollout of updates, and more. Container orches-
tration tools were developed to support those tasks.
One of the most popular container orchestrators is
Kubernetes (K8s)1, which is available as open-source
software. According to a survey report by CNCF’s
Cloud Native Landscape2, there are more than 109

∗IIP-Ecosphere is partially supported by the German Fed-
eral Ministry of Economic Affairs and Climate Action (BMWK)
under grant 01MK20006D

1https://kubernetes.io
2https://www.cncf.io/wp-content/uploads/2020/08/

CNCF_Survey_Report.pdf

tools to manage containers, but 89% are using vari-
ants of K8s. Further, a CNCF microsurvey3 shows
that the most popular edge use case is manufactur-
ing/industrial IoT, with 54% out of 117 respondents,
75% using K8S for edge applications.

Interoperability is one of the main pillars of
IIoT/Industry 4.0 besides connectivity, cybersecurity,
and artificial intelligence [5]. Interoperability is the
capability of heterogeneous entities, e.g., IIoT de-
vices, to connect and exchange meaningful informa-
tion [5]. A lack of interoperability as it currently ex-
ists, e.g., among IIoT field devices of different ven-
dors, but also on higher levels of IIoT systems, sig-
nificantly increases complexity and costs for IIoT de-
ployment/integration [1]. To overcome this, ongoing
efforts aim at standardizing data formats and infor-
mation models, e.g., Open Platform Communications
United Architecture (OPC UA) or Asset Administra-
tion Shells. Some argue that also protocols such as
MQTT or AMQP, or – more extreme – even network-
ing protocols like TCP/IP shall be standardized.

Orchestrators such as K8s form a cluster of at least
one master and multiple worker nodes executing the
containerized applications. By default, K8s uses a
proprietary REST-based protocol for the communica-
tion between master and worker nodes. Such proto-
cols conflict with the aforementioned standardization
ideas and can lead to adoption issues. Here, openness
can help, e.g., K8s can be extended through the Con-
tainer Network Interface (CNI), which establishes net-
work connections among containers. However, there
is no support to change the master-worker communi-
cation, e.g., to a standardized protocol.

In this context, we ask a what-if question: If
IIoT/Industry 4.0 communication protocols would be
standardized, would it still be possible to utilize exist-
ing container orchestrators like K8s? Subsequently,
can we adapt container orchestrators to such a setup
and can this lead to a performance impact? In this
paper, we focus on K8s as the most frequently used
container orchestrator and present an approach to re-
place the communication protocol without modifying
the K8S code base. As IIoT communication is yet
not standardized, we demonstrate our approach with

3https://www.cncf.io/wp-content/uploads/2021/05/

KubernetesEdge_Survey_Report_2021_v2.pdf

https://kubernetes.io
https://www.cncf.io/wp-content/uploads/2020/08/CNCF_Survey_Report.pdf
https://www.cncf.io/wp-content/uploads/2020/08/CNCF_Survey_Report.pdf
https://www.cncf.io/wp-content/uploads/2021/05/KubernetesEdge_Survey_Report_2021_v2.pdf
https://www.cncf.io/wp-content/uploads/2021/05/KubernetesEdge_Survey_Report_2021_v2.pdf


currently popular protocols in the domain. For bi-
nary payload transport, we rely on the Message Queu-
ing Telemetry Transport (MQTT) and the Advanced
Message Queuing Protocol (AMQP), for Industry 4.0
information models we use the currently trending As-
set Administration Shell (AAS) [2]. These forms of
communication are also requested for future IIoT plat-
forms as identified in [7] and in the IIP-Ecosphere
project4, which defines the scope of our work.

In [6], Novianti et al. conducted performance eval-
uation of CNI plugins. They performed several in-
stances of benchmark tests for TCP and UDP and
collected CPU and memory usage for each CNI plu-
gin. For benchmarking, the authors used the k8s-
bench-suite5 benchmark tool with some modified pa-
rameters. In [4], Kapočius analyzed the performance
of 4 CNCF recommended K8s CNI plugins, namely
Flannel, Calico (VXLAN, IPIP, and pure IP), Kube-
router, and Weave. The author compared the perfor-
mance in terms of latency and average TCP through-
put. Although related, CNI does not support chang-
ing the underlying communication protocol as men-
tioned before. To our best knowledge, there is no work
on replacing the communication protocol for K8s.

The paper is structured as follows: In Section 2,
we present the approach that we used to replace the
communication protocol of K8s. Then, we discuss the
experiment that we conducted and its results in Sec-
tion 3. Finally, in Section 4, we conclude the paper
and give an outlook on future work.

2 Approach

In this section, we introduce the utilized communica-
tion protocols, discuss the architecture of K8s as well
as our approach on modifying the communication pro-
tocol without changing K8s.

MQTT is a transmission data protocol suitable for
machine to machine communication, Wireless Sen-
sor Networks, and Internet of Things applications [3].
AMQP is a similar protocol that delivers multi-
function messages to distributed receiver queues [3].
In contrast to such payload/channel-based protocols,
AAS is a virtual and active representation of Industry
4.0 components in a network. An AAS stores digital
information of an asset and makes asset related ser-
vices available through an API with access control [2].

As shown in Figure 1, the architecture for a K8s
cluster consists of a master and several worker nodes.
The master node manages and controls the K8s clus-
ter, while the worker nodes execute the containerized
applications. The default communication between the
master node and worker nodes is shown by the black
arrow lines in Figure 1, where components in the
workers request updates regarding their status in the
cluster from the master node.

4https://www.iip-ecosphere.eu/
5https://github.com/InfraBuilder/k8s-bench-suite

To replace the underlying communication proto-
col of K8s, we follow a proxy approach including one
proxy type for the master node and one for work-
ers. Each proxy is equipped with the three proto-
cols mentioned above, from which we can select the
actual protocol at startup. Figure 1 illustrates the
communication steps: (1) the worker proxy receives a
request from a K8s worker component. (2) the worker
proxy translates the request to the active protocol and
passes it on to the master node proxy. (3) the master
node proxy processes the request using the K8s Java
Client library, which, in turn, calls the K8s REST
API. (4) the master node proxy translates the received
REST response to the active protocol and sends it
back to the originating worker proxy. (5) the worker
proxy passes the response on to the originating K8s
component. It is worth mentioning that the K8s pro-
tocol involves various formats, e.g., protobuf, and that
the proxy design shares common functionality to ease
the integration of different IIoT protocols.

sched
sched
sched

Master Node

M
a

s
te

r P
ro

x
y

(M
Q

T
T
, A

M
Q

P
, A

A
S

)

Worker Node

(1) (5) (5)

(2)

(2)

(1)

ectd

api
api
api

c-c-m
c-c-m
c-c-m

c-m
c-m
c-m

k-proxy

kubelet

Figure 1: Basic K8s cluster (proxies in red).

3 Experiment and Results

Protocol translations to realize proxies may lead to
performance impacts. In this section, we present an
experiment to gain insights into the performance of
our proxies. Then, we discuss the results.

Experimental environment: We used three
VMware virtual machines (VM), each VM has 4 vir-
tual CPU cores, 16 GB of RAM and Linux Ubuntu
Server 20.04 installed. The VMs are connected by
local network with an average bandwidth of 17,7
Gbits/sec. We established a K8s cluster with one VM
acting as master node and the other VMs as worker
nodes. We used Java 13 to develop the proxies. We
used RabbitMQ (v5.15.0) and Eclipse Paho (v1.2.5)
as protocol clients for AMQP and MQTTv5 as well
as Apache QPID-J (v8.0.2) and HiveMq (v2020.4) as
brokers, respectively. Further, we integrated Eclipse
BaSyx (v1.0.1) as open source AAS middleware. As
orchestrator, we used K8s (v1.23.3).

Subject and variants: We set up four variants,
the original K8s and one variant per proxied protocol.
Since K8s does not ship with a (required) CNI, we
created a simple networking setup with a bridge for

https://www.iip-ecosphere.eu/
 https://github.com/InfraBuilder/k8s-bench-suite


each node into a single subnet as well as respective
port mappings. Alternatives could have been known
CNIs like Calico or Flannel, which may introduce un-
expected side effects on the experiment.

Experimental procedure: As basis we use the
K8s test-infra6, a testing infrastructure of K8s includ-
ing 7118 tests targeting different aspects of a K8s
cluster such as ”Conformance”, ”Linux only”, ”Net-
workPolicy”, or ”Performance”. We selected the 348
conformance tests to validate the functionality of K8s
in combination with our proxies. This includes tests
on API communication, storage, networking, authen-
tication, or scheduling. We use the total execution
time of all conformance tests as a coarse-grained in-
dicator on the impact of our proxies on the overall
functionality of K8s. For a more detailed insight, we
use the only performance test in test-infra. This test
creates a container for each worker, starts the con-
tainers, which generate (as a simple application) some
logs. The logs are requested and validated by the test.
Here, we focus on the individual execution time.

In both cases, we followed the same procedure for
a selected variant/test aspect: First, we start7 master
and work nodes proxies. Then, we join the worker
nodes into the cluster. After that, we run either
the conformance tests once or the performance test
once. Next, we remove the worker nodes from the
cluster. Finally, we stop7 master and worker proxies.
For the performance test, repeat these steps 100 times
to gather also fluctuations. Experiment execution and
result collection are automated through Bash scripts8.

Results: The conformance tests were successfully
executed for each variant with an execution time of
about 89 minutes and variations of around 6 minutes.
We can attribute the variances to the consecutive exe-
cution of tests to random fluctuations that occur even
in the original K8s, where the execution of one test
suddenly delays the start of the next test. As we just
aim at a coarse grained insight, infra-test was not re-
alized as a performance experiment in mind and we
tried to avoid modifications of K8s/infra-test, we be-
lieve that a variance of 5% is acceptable. Further,
the proxying also increases the resource usage, as we
believe in acceptable manner. E.g., the average CPU
load for the AAS proxy is increased by 2.67%/1.35%
(master/worker), the memory usage by 4.06%/2.43%
and the network traffic by 1.99%/0.51%.

Table 1 shows the statistical summary for the exe-
cution time of the repetitions of the performance test
for each variant. The proxies only cause minor devia-
tions compared to the original K8s.

4 Conclusion

The use of containerized applications in IIoT demands
management capabilities as, e.g., provided by con-

6https://github.com/kubernetes/test-infra
7Skipped for the original K8S variant.
8https://doi.org/10.5281/zenodo.7158281

Table 1: ”Performance” test result in milliseconds

K8s variant Min Max Avg Stddev
Original K8s 5,083 5,163 5,108 0,018

AAS 5,086 5,159 5,108 0,017
AMQP 5,085 5,160 5,108 0,016

MQTTv5 5,085 5,152 5,107 0,017

tainer orchestrators. Kubernetes offers many capabil-
ities, but proprietary communication protocols (K8s
and other orchestrators) can cause adoption issues
when standardization in the IIoT domain progresses.

In this paper, we presented an approach to enable
IIoT protocol compliance by replacing the commu-
nication protocol of K8s without modifying its code
base. We conducted an experiment with four variants
(original K8s, MQTT, AMQP, and AAS). Although
executed on a small scale cluster, a potential limita-
tion, the results indicate that our approach does not
cause major effects on typical functionality or perfor-
mance of K8s. Based on this, can imagine that proto-
col openness (without proxy detours) may be a future
interoperability feature of orchestrators. Further, we
believe that a similar approach can be applied to other
orchestrators such as Docker Swarm or Mesos.

In future, we plan to evaluate the scalability with
different cluster sizes. Further, aim at integrating to
other relevant protocols, e.g., OPC UA.

References

[1] E. Sisinni et al. “Industrial Internet of Things:
Challenges, Opportunities, and Directions”. In:
IEEE Trans Industr Inform 14.11 (2018),
pp. 4724–4734.

[2] N. Chilwant and M. S. Kulkarni. “Open Asset
Administration Shell for Industrial Systems”. In:
Manufacturing Letters 20 (2019), pp. 15–21.

[3] N. Q. Uy and V. H. Nam. “A comparison of
AMQP and MQTT protocols for Internet of
Things”. In: Conf. on Information and Computer
Sc. 2019, pp. 292–297.

[4] N. Kapočius. “Performance Studies of Kuber-
netes Network Solutions”. In: Conf. of Electrical,
Electronic and Information Sc. 2020, pp. 1–6.

[5] A. Hazra et al. “A Comprehensive Survey on
Interoperability for IIoT: Taxonomy, Standards,
and Future Directions”. In: ACM Comput. Surv.
55.1 (2021).

[6] S. Novianti and A. Basuki. “The Performance
Analysis of Container Networking Interface Plug-
ins in Kubernetes”. In: Intl. Conf on Sustainable
Information Eng. and Tech. 2021, pp. 231–234.

[7] H. Eichelberger, H. Stichweh, and C. Sauer.
“Requirements for an AI-enabled Industry 4.0
Platform - Integrating Industrial and Scientific
View”. In: SOFTENG’22. 2022.

https://github.com/kubernetes/test-infra
https://doi.org/10.5281/zenodo.7158281

	Introduction
	Approach
	Experiment and Results
	Conclusion

