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Executive Summary 

The IIP-Ecosphere platform is a central asset developed by the IIP-Ecosphere project. The core aim of 

the platform is to research and demonstrate novel platform concepts for Industry 4.0, e.g., asset 

administration shells as interfaces for software components and resources, unified edge deployment, 

an AI toolkit or seamless configuration of a platform from network settings via services up to 

applications running on the platform. This platform handbook provides insights into the rationales, 

ideas and concepts that make up the design and the realization of the IIP-Ecosphere platform, ranging 

from an overall layered architecture over a detailed discussion of the design and realization state of 

each layer up to cross-cutting mechanisms such as the configuration model or the related code/artifact 

generation.  

This platform handbook addresses the technical side of the platform work in IIP-Ecosphere and builds 

on the intensive prior work on requirements (usage view and functional/quality requirements of the 

platform). This handbook shall provide means for deeper technical discussions with partners, 

stakeholders and interested parties, but also allow for a technical understanding to contribute to the 

platform, e.g., in terms of protocols, platform connectors, services or demonstration applications. 

Acknowledgements: We are grateful to Dr. Christian Sauer and Ahmad Alomosh from the Software 

Systems Engineering Group of the University of Hildesheim for cross-reading this document and 

providing valuable feedback and ideas for improvement. 
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1 Introduction 

1.1 Motivation and Goals 
The digitalization of the industry increases the effectiveness of technical systems and related 
processes, but also affects the complexity of the realizing (software) systems. Currently, several 
approaches are developed in the fields of Internet-of-Things (IoT), Industrial Internet-of-Things (IIoT) 
or „Industrie 4.0“ (I4.0)1. To support the industrial transformation towards IoT, IIoT and I4.0, several 
software platforms were developed that provide different capabilities.  

The vision of the BMWi-funded2 project IIP-Ecosphere is to enable innovations in the area of industrial 
production based on connected, intelligent and autonomous systems in order to increase productivity, 
flexibility, robustness and efficiency of IIoT and I4.0. IIP-Ecosphere aims at creating a novel ecosystem 
for the “next level” of intelligent industrial production, not only for software-based systems, but also 
for the people involved in this kind of systems, e.g., automation engineers, software developers, AI 
experts, startups, venture capitalists, etc. On the software side, one core activity in IIP-Ecosphere is to 
research and to realize a virtual platform that connects factory installations across companies in a 
vendor-independent manner. In particular, the platform shall provide easy-to-use access to Artificial 
Intelligence (AI) in secure and flexible manner. 

Towards the design of such a platform, we analyzed in [27] 21 IIoT platforms with specific relevance to 

IIP-Ecosphere and described in [8, 30] the requirements for the IIP-Ecosphere platform from two 

different perspectives, namely the usage view and the functional/quality requirements view. The next 

step is to turn the requirements into an architecture and to implement the platform. The resulting 

platform shall be open, extensible, vendor-neutral, secure, flexible, configurable, self-adaptive and 

based on relevant standards as well as on existing Open Source components. In particular, we aim at 

developing a virtual platform, i.e., a platform that utilizes existing, already installed solutions by 

integrating with them, using accessible output and resources, enhancing them with AI and, if desired, 

feeding back AI-enhanced information into utilized systems. Thus, we do not aim at replacing existing 

platforms as those mentioned in [27] rather than enhancing them. Moreover, we aim at demonstrating 

how research results, e.g., from systematic variability management, security or data protection, can 

lead to platform concepts that are currently rarely used in IIoT/I4.0 platforms. Besides the desirable 

abilities mentioned above, following the initial decisions made in [8, 30], the platform shall be service-

based and virtualized through containers. One relevant I4.0 standard to integrate the parts and pieces 

of the platform is the Asset Administration Shell (AAS) [25] that we aim to apply as self-description 

and interface to software components across all platform layers. The consortium discussions regarding 

a vision of the IIP-Ecosphere platform also emphasized the need to directly communicate with 

production machines, in particular, to utilize edge devices and, if feasible, cloud technology (such as 

the upcoming Gaia-X3). This re-shaped the character of the envisioned platform from a purely virtual 

to a mixed-virtual platform with stronger aspects of a usual IIoT/I4.0 platform, in particular providing 

uniform deployment of services to heterogeneous execution resources such as edge devices, on-

premise servers or clouds. 

In this whitepaper, we aim at discussing and documenting the architecture and the implementation of 

the IIP-Ecosphere platform. This happens in an incremental4 fashion as, we intentionally mix 

requirements, architecture and implementation activities in an agile manner. With this approach, we 

aim at synchronizing the requirements with the architecture and ensuring that the underlying 

                                                             
1 Translates to some degree to IIoT in German-speaking areas in Europe, partly based on own standards. 
2 https://www.bmwi.de/Redaktion/DE/Publikationen/Technologie/ki-innovationswettbewerb.html  
3 https://data-infrastructure.eu  
4 Along the realization state, i.e. the releases of the platform software. The version number of this white paper 
reflects the software release version. Thus, at the beginning some sections may be rather empty. 

https://www.bmwi.de/Redaktion/DE/Publikationen/Technologie/ki-innovationswettbewerb.html
https://data-infrastructure.eu/
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implementation realizes and fits the architecture. Thus, this document documents the current state at 

hands, while we aim at updating this document as part of upcoming releases of the IIP-Ecosphere 

platform. In other words, in this document, we document and discuss the current state of the platform 

on a feasible level of detail, the underlying implementation, decisions we made and the tradeoffs that 

we faced. However, depending on the state of the implementation, this document is not meant to be 

complete but rather to be a “living document” that is updated incrementally. 

It is important to mention that this document is also meant to be a basis for discussions with the 

respective teams in IIP-Ecosphere5 (mainly Think Tank “Platforms” and KI-Accelerator) and with all 

kinds of platform stakeholders in order to help, improve, influence or integrate with development of 

the IIP-Ecosphere platform. So far, it helped to onboard various co-workers and stimulated detail 

decisions and clarifications. 

1.2 Interaction with other initiatives 
Work on the IIP-Ecosphere platform is influenced by interaction with other initiatives, in particular 

• The IIP-Ecosphere IIoT platform overview [27] indicating challenges and potential for future 

AI-based I4.0 plattforms. 

• Interactions with other funded projects: DaPro6, BaSys7, FabOs8, Service-Meister9. 

• Internal IIP-Ecosphere stakeholders with interest in validating the platform (in conjunction 

with their own approaches) or for contributing components, e.g., dedicated services. In the 

remainder of the funded time of IIP-Ecosphere, the “AI accelerator” work package plans to 

make contributions in terms of customizable (AI) services. First steps in this direction have 

been done, e.g., in terms of feasibility studies with the IIP-Ecosphere demonstrators or a 

collection of candidate services for generalization. 

1.3 Structure of the document 
A typical first section of a platform handbook could be a summary of the requirements to be realized. 

As stated in Section 1, the IIP-Ecosphere team summarized the results of the requirements collection 

for the platform in two other whitepapers, namely the usage view [30] and the functional/quality 

requirements view [8]. For pragmatic reasons, these two documents have been prepared partially 

before and partially while designing the platform architecture, so that they are synchronized with the 

work described here. In order to avoid inconsistencies, we are not repeating the requirements in this 

document rather than referring to [8, 30] through requirements identifiers defined there. 

In Section 2 we introduce the tooling that is used for developing the architecture model and the 

implementation. A brief discussion of the tooling and the rationales for certain decisions is relevant at 

that point as the decisions significantly interact with the modeling concepts, i.e., affect the set of 

concepts that we practically can use for specifying, describing or realizing the architecture. Moreover, 

Section 2 already indicates that the ultimate outcome of our work is not “just” an architecture rather 

than an implemented and working platform. 

In Section 3 we introduce and discuss the architecture of the IIP-Ecosphere platform, ranging from the 

UML profiles used, over the lower transport up to user-defined applications. This section is not only 

intended to present the architecture as it was designed rather than also the tradeoffs that we faced 

and the decisions that we made towards the actual architecture. In Section 4, we summarize 

                                                             
5 See https://www.iip-ecosphere.eu/ for a summary of the project structure. 
6 http://dapro-projekt.de/  
7 https://www.basys40.de/  
8 https://www.fab-os.org/  
9 https://www.servicemeister.org/  

https://www.iip-ecosphere.eu/
http://dapro-projekt.de/
https://www.basys40.de/
https://www.fab-os.org/
https://www.servicemeister.org/
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architectural constraints that must be obeyed by the implementation. In Section 5, we discuss the 

representation of the platform components in terms of Asset Administration Shells, which are used as 

a uniform way to represent interfaces and communication among components.  

One aim of the platform work in IIP-Ecosphere is to research concepts on systematically and 

consistently configuring such a platform, ranging from network settings over available resources or 

services up to the wiring of re-usable parts and pieces to IIoT-applications. In Section 6, we elaborate 

the structure of and the concepts of the model to specify decisions that must be made to turn 

alternative or generic components into an installable platform with user-defined applications. We will 

also discuss, how to utilize such a model, not only to validate configuration decisions, but, in particular, 

to automatically generate platform instances, artifacts or glue code as one means of supporting 

platform users to create IIoT-applications.  

In Section 7, we discuss mechanisms ensuring the security of the platform. In Section 8, we detail how 

to obtain, install, instantiate and use (depending on the implementation state) the IIP-Ecosphere 

platform. In Section 9 we summarize steps on how to extend, contribute to or use the IIP-Ecosphere 

platform. 

In particular for Sections 3 to 9 it is important to recall that the IIP-Ecosphere platform is currently 

under agile and incremental development, i.e., while some sections are detailed and an 

implementation is provided for the respective components, other components are still in planning and 

not yet realized. The design and implementation state will change and evolve over time as the 

architecture and the implementation will do. To detail the respective realization state, we will refer to 

the requirements in terms of realized, modified or, if needed, even deferred or excluded requirements. 

Ultimately, in Section 10 we will summarize and conclude this document.  In Section 11 we list 

references to other work that we rely on. 
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2 Tooling and Basic Technical Decisions 
Tooling is an important topic when creating an architecture and when implementing it in terms of 

executable code. In this section, we briefly describe the tooling decisions made by the involved 

partners, as they affect the available options for modeling the architecture and for realizing it. 

The architecture is designed using the Unified Modeling Language (UML) [24]. We will not give an 

introduction to UML in this document rather than assuming that the reader is sufficiently familiar with 

UML. As tool support, we use Eclipse Papyrus10. While there is a broad range of modeling tools 

available, in particular commercial ones, we decided to use Papyrus for two major reasons: 

1) During architecture modeling already concepts for security and data privacy shall be integrated 

and the architecture shall be evaluated in this direction. Therefore, we will use UMLsec [19] as 

well as a specific security profile developed for IIP-Ecosphere. UMLsec has been successfully 

applied with Papyrus and with the Eclipse UML modeling tools, advocating Papyrus/Eclipse as 

a natural choice for our work. For applying the security concepts, the respective UML profiles 

must be installed and integrated into the model. For an automated security analysis, the 

additional Eclipse-based CARiSMA11 tool must be installed. 

2) In contrast to commercial software, Papyrus is available to the interested public as it is 

released as Open Source. This facilitates platform work, as we plan to release the UML model 

of the IIP-Ecosphere platform as part of one of the platform releases. Moreover, as it is based 

on Eclipse, further available tools and model translations from the Eclipse ecosystem may be 

utilized. 

Although Papyrus offers various UML modeling capabilities, in particular the behavioral modeling for 

state machines, sequence or communication diagrams are currently not completely stable. This, 

however, affects the available options and concepts for modeling the platform architecture. Thus, in 

some cases, more recent modeling concepts could have been used that are not available for this 

reason. Unfortunately, the realization state of Papyrus also affects the layout of the included diagrams, 

which could be presented in more pleasing manner would some more diagramming functionality be 

available. This is also true for the Papyrus diagram export, which so far produces only formats (bitmap, 

SVG) that unfortunately can only hardly (or with some inconvenient transformation steps) be used 

with Microsoft Word. Thus, we include UML figures taken from the architecture model as bitmaps into 

this document. 

Along with the architecture and the design of individual components, also architectural constraints 

arise, e.g., that in particular for alternative components, dependencies to underlying libraries must be 

private to the respective platform component, i.e., and globally used by other platform components. 

We will discuss the architectural constraints of the IIP-Ecosphere platform in Section 4 as a specific 

summary of the architecture section. Section 3 may already indicate or mention such constraints. 

For implementing the architecture, we must integrate existing components and take into account that 

in particular AI services will be realized in different programming languages.  

• For the Java components, we rely on Eclipse (so far 2021-03, version 4.19.0) with Maven12, 

Git13 and checkstyle14 integrations. Fundamental technical decisions are documented along 

with the code. As we use Maven for the platform installation, a Java Development Kit (JDK) is 

                                                             
10 https://www.eclipse.org/papyrus/ version 4.8 
11 https://rgse.uni-koblenz.de/carisma/  
12 https://maven.apache.org/  
13 https://git-scm.com/  
14 https://checkstyle.sourceforge.io/  

https://www.eclipse.org/papyrus/
https://rgse.uni-koblenz.de/carisma/
https://maven.apache.org/
https://git-scm.com/
https://checkstyle.sourceforge.io/
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required rather than a Java Runtime Environment (JRE). We just mention some of the decisions 

here: The dependency management and the build process are specified in Maven. Templates 

for code formatting and validation of the formatting are available for checkstyle in the source 

code repository as part of the Eclipse project for managed platform dependencies.  A common 

logging framework was selected (slf4j) based on decisions of components to be integrated. 

Components of the IIP-Ecosphere platform are represented as individual Eclipse projects. For 

compliance with yet unknown edge devices, we require that (at least the lower, edge-related) 

layers are executable with Java 1.8 (as this is also the case for many available IoT libraries). 

This technical constraint may be relaxed for higher platform layers. 

• While some AI methods may also be realized in Java, nowadays AI methods are frequently 

implemented based on Python. For Python services (as for Java-based services), a service 

execution environment is foreseen, which is responsible for the communication with related 

Java components, so that an AI developer does not have to work with both languages or 

protocol details. For the service environment, we rely on Python 3.9.6, a rather recent version 

as modern AI frameworks often also require a recent Python version. 

• Some components require basic technical settings for their startup, e.g., the internet address 

of the AAS of the platform or basic security certificates to announce the own instance, to 

request or contribute information. The aim is to reduce such explicit setup information to a 

minimum as it is a source for inconsistencies. For this purpose, such information shall be 

managed centrally, instantiated into binary components or distributed via discovery protocols 

where feasible. Further information not required to startup a component shall be made 

available via the (joint) AAS of the platform. Technical settings that may be subject to 

modifications by administrators shall be represented in a uniform and human readable 

manner. For stored setup information we rely on Yaml15, for machine-readable complex data 

in AAS on JSON16. 

• Components shall internally communicate via interfaces in order to reduce (accidental) 

dependencies. Alternative and optional components shall be realized as a kind of plugin and 

register themselves into the platform. On the Java side, we rely on the Java Service Loader 

(JSL) mechanism, which associates concrete implementations to their respective (descriptor) 

interfaces. The relation happens through a specific form of file that is evaluated by the JSL 

mechanism upon request. We use that mechanism to define, e.g., factory instances, to 

compose AAS but also to set up the component lifecycle, e.g., to handle the start and shutdown 

process. 

• So far, no mechanisms to shield (the dependencies) of individual platforms against each other 

was necessary, as, e.g., technical dependency conflicts could be successfully resolved through 

global version restrictions. However, we are aware of the fact that in particular though external 

contributions, conflicts may arise that cannot be solved in this manner. Thus, for future 

releases, we plan to investigate, whether approaches like OSGi (Open Services Gateway 

Initiative) could help to avoid unintended or unexpected conflicts. 

• All components shall provide sufficient tests for their functionality. Tests shall be executed 

during the continuous integration (CI) of the platform and also usual test metrics shall be 

recorded. 

As stated in Section 1, for several reasons one objective of the IIP-Ecosphere platform is to use existing 

Open Source solutions wherever feasible. However, not all Open Source licenses are per se permissible 

                                                             
15 https://en.wikipedia.org/wiki/YAML  
16 https://www.json.org/json-en.html  

https://en.wikipedia.org/wiki/YAML
https://www.json.org/json-en.html


 

 
 

IIP-Ecosphere Platform Handbook 

11 

in industrial contexts. Therefore, the IIP-Ecosphere consortium has reviewed Open Source licenses and 

categorized them into four categories:  

1) Usable without limitations. 

2) Permissible, but potentially problematic. 

3) Commercial licenses. 

4) Not allowed in particular due to copy-left implications. 

These categories shall be considered already during the design of the IIP-Ecosphere platform and may 

effectively limit potential candidates. Licenses of the first two categories may be used (with care), the 

remaining shall be avoided. This is in particular true for platform components that constitute 

mandatory core functionalities of the platform. Commercial licenses may be used depending on the 

decision of the installing organization. Components relying on commercial licenses shall be optional by 

default and, thus, their use is the decision of the using organization. Analogously, also software under 

not permissible licenses could be used in optional parts of the platform, but to avoid later license 

conflicts, licenses of category 4 shall be avoided wherever possible.  

The source code of the IIP-Ecosphere platform is made publicly available in the GitHub space of IIP-

Ecosphere17. Moreover, to foster transparency, the development of the IIP-Ecosphere platform 

happens in public. In later stages also the underlying architecture model shall be made available to 

support external and future developments after the project lifetime. As far as possible, components 

are subject to CI using the Jenkins server of the Software Systems Engineering (SSE) group at the 

University of Hildesheim. Upon successful builds, artifact snapshots are deployed by the CI processes 

to the Maven repository18 of the SSE group. Java parts of stable releases are deployed to Maven 

central19. 

 

  

                                                             
17 https://github.com/iip-ecosphere/platform/  
18 https://projects.sse.uni-hildesheim.de/qm/maven/  
19 E.g., https://repo1.maven.org/maven2/de/iip-ecosphere/platform/, 
https://search.maven.org/artifact/de.iip-ecosphere.platform/transport   

https://github.com/iip-ecosphere/platform/
https://projects.sse.uni-hildesheim.de/qm/maven/
https://repo1.maven.org/maven2/de/iip-ecosphere/platform/
https://search.maven.org/artifact/de.iip-ecosphere.platform/transport
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3 Architecture 
The architecture of the IIP-Ecosphere platform aims at realizing the requirements collected in the 

project [8, 30] in terms of software. In this section, we discuss the design of the individual parts and 

components of the platform. Please note that as mentioned in Section 1, we follow a pragmatic agile 

approach to the development of the platform, which involves forward and feedback cycles among 

requirements, architecture and implementation. Thus, depending on the realization state, not all 

platform components may be completely described in this version of the document, i.e., we will work 

out sections incrementally depending on the realization state.  

We start in Section 3.1 with an overview of the platform layers and dive then into their details. At the 

end of Section 3.1, we detail some further basic aspects, namely relation to reference architectures in 

Section 3.1.1, basics of asset administration shells in Section 3.1.2 and the virtual character of the 

platform in Section 3.1.3. Section 3.2 indicates the coarse-grained development streams. Section 3.3 

takes up the general requirements from [8] as context for the platform architecture. As basis for the 

architecture description, we discuss in Section 3.4 the used UML profiles and go through the layers of 

the infrastructure, first as overview and then one section per layer, starting at the bottommost layer. 

3.1 Overview 
The overall architecture of the IIP-Ecosphere platform follows a layered style (see Figure 1 with only 

high-level relations shown) based on components and services (R4 in [8]). As far as feasible, we aim 

for a strict (logical) layering, so that for two adjacent layers ll and lu (with as “the lower layer” ll being 

located below “the upper layer” lu), only lu (and not its transitive upper layers) shall access or call ll 
directly. Moreover, there are also aspects that cross-cut visibly or invisibly in this layered structure. 

• The interface description and the main call style of the IIP-Ecosphere platform is based on 

Asset Administration Shells (R7, [25]), in particular based on the “reference implementation” 

BaSyx20. An integration of AAS as well as support for realizing Administration Shells in IIP-

Ecosphere style will form the bottom-most layer of the platform. 

• In addition, the platform will contain an event-based messaging mechanism, e.g., a Broker, 

so that components and services can communicate among each other independent of the 

layering. Although this implies certain degrees of freedom and may be used to bypass R7 in 

exceptional cases, the event-based messaging shall not happen in an ad-hoc or chaotic manner 

undermining the layer structure. Further, uncontrolled messaging may accidentally overload 

the broker(s), in particular if the broker is involved in the processing of soft-realtime data 

streams (one potential manifestation of R10 [8]). As event-based communication and data 

streaming are essential to the platform, they occur on one of the fundamental layers 

(Transport) utilizing the external (abstract) components Broker and StreamingLibrary.  

• Variability management and consistent configuration typically do also cross-cut layers, as 

variability instantiations may affect all components. This is already reflected in the 

requirements, where configuration model occurs in many different functional topics, see e.g., 

also for implicit information R8, R19f, R20, R28, R30, R31, R34, R40-R43, R62, R64, R73, R77, 

R80, R86, R89, R93-R101, R104, R107, R112, R119-R122, R131, R134 in [8]. Moreover, some 

layers require access to the configuration, in particular at runtime, e.g., to determine whether 

migrations of components are needed or how adaptations shall be enacted. However, also 

here a chaotic use of the configuration can easily lead to unmanageable dependencies. 

Therefore, we modularize the configuration along the layers (as indicated in Figure 1), and, if 

required, provide access to the individual configuration modules. Similarly, only some few 

                                                             
20 https://www.eclipse.org/basyx/  

https://www.eclipse.org/basyx/


 

 
 

IIP-Ecosphere Platform Handbook 

13 

selected mechanisms to instantiate variability shall be utilized, in particular code generation, 

generation of setup files and artifact selection while packaging. 

 

Figure 1: Layered platform overview with indicating only relevant high-level relationships21. 

For short, the layers of the platform from bottom to top: 

                                                             
21 Colors indicate the realization state and element categories. Green components indicate AAS components, 
turquoise layers/components are actually realized (at least in an initial version), red parts are so far not realized 
and may finally even be omitted (e.g., functions of semantic mapping and routing are already taken over by 
other components) and orange parts are currently in realization. 
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• Support Layer: The support layer realizes basic abstractions and helpful functions for the 

upper layers of the platform. The core aim is to reduce repetitions of non-trivial management 

functions or functions to create common AAS structures and to foster internal conventions, 

e.g., how to represent certain information in AAS. Moreover, it contains an abstraction of the 

underlying AAS implementation, serving for both, more flexibility (allowing to also use other 

implementations) and risk reduction. 

• Transport and Connectors Layer: This layer is responsible for connecting devices among each 

other and with platform services using appropriate protocols and formats from the I4.0 

domain. However, several protocols and formats impose different tradeoffs in functionality, 

performance, security and legal/normative impact. This layer integrates such protocols in a 

flexible manner. The role of the Transport Component is to abstract over relevant protocols 

such as MQTT22, AMQP23, or OPC UA pub/sub24 to integrate the abstraction with the 

technology used for streaming (StreamingLibrary) and to provide an environment for 

protocol/format connectors. In contrast to recent platforms [27], where a single fixed 

transport protocol is not uncommon, we want to avoid making such basic decisions on behalf 

of the user already on this layer. Also for the streaming technology several candidate 

approaches with their tradeoffs are known. The idea is to prepare a flexible integration and to 

link this decision to the selected transport protocol. Similarly, connections to production 

machines and already installed platforms are abstracted by the Connectors Component. Such 

a Connector may utilize similar protocols as the Transport Component, but also protocols at 

higher semantic levels such as OPC UA providing an own information model shall be made 

available. In contrast to the Transport Component, which passes through given data, here only 

subsets of the data being available to a connector may be ingested in the platform and 

information/commands originating from the platform may be transported back, e.g., to 

reconfigure an underlying machine. The Connectors may optionally include functionality of 

the International Data Spaces (IDS)25 for secure access to data. 

• Services Layer: Openness and extensibility through services of different kinds, in particular AI 

services, are at the heart of the IIP-Ecosphere platform. To be useful for an application, services 

must be parameterized and orchestrated, e.g., their data (streams) must be connected to 

other services or connectors. While the interconnections will be handled by the Transport and 

Connectors Layer, the Services Layer defines the basic service interfaces (Services) as well 

as the services execution environments, e.g., for Java and Python. 

• Resources and Monitoring Layer: To become effective, services must be deployed to 

resources/devices (in terms of a Deployment Unit) and monitored at runtime. In IIP-

Ecosphere, deployment targets such as edge devices shall describe themselves in terms of AAS 

and perform a registration with the device registry (Devices), which reflects its data into the 

runtime structures of the platform. For deployment, the Deployment Unit (more precisely, 

the ECS runtime from [30]) receives commands via its AAS from the platform, downloads a 

container including the service implementations26 and starts the container. Although 

techniques and frameworks for both tasks exist, according to our knowledge so far no AAS is 

used for this purpose. However, also the execution of the services in the container must be 

monitored, which may involve reusable monitoring probes provided by the platform as well as 

application-specific probes. The reusable mechanisms are provided by the Monitoring 

                                                             
22 https://mqtt.org/  
23 https://www.amqp.org/  
24 https://opcfoundation.org/news/press-releases/opc-foundation-announces-opc-ua-pubsub-release-
important-extension-opc-ua-communication-platform/  
25 https://www.internationaldataspaces.org/  
26 Assembling the containers is managed by the Configuration Layer as described below. 

https://mqtt.org/
https://www.amqp.org/
https://opcfoundation.org/news/press-releases/opc-foundation-announces-opc-ua-pubsub-release-important-extension-opc-ua-communication-platform/
https://opcfoundation.org/news/press-releases/opc-foundation-announces-opc-ua-pubsub-release-important-extension-opc-ua-communication-platform/
https://www.internationaldataspaces.org/


 

 
 

IIP-Ecosphere Platform Handbook 

15 

component, which (in terms of probes and signaling) is part of the service environment while 

the aggregation of the monitoring data happens on central IT level. The Monitoring 

component also uses the capabilities of the support layer (monitoring in terms of AAS) and the 

Transport and Connection layer (fast track signaling, alarms) and may issue alerts in generic 

as well as application-specific manner to further layers. 

• Security and Data Protection Layer: Security and data protection in the IIP-Ecosphere platform 

encompass of two parts, 1) cross-cutting mechanisms that can be used to implement security 

and data protection in any component, e.g., authentication, and 2) centralized or distributable 

mechanisms to support security and data protection, e.g., services supporting data protection 

or data storage. While the cross-cutting mechanisms occur in all layers (directly or indirectly 

controlled through the platform configuration), this layer primarily focuses on the second part. 

Thus, it provides access to the overall security configuration, e.g., authentication tokens or 

cryptographic keys for accessing edge devices. Further, this layer realizes components 

(optionally) enhancing the security and data protection, e.g., stream-based services for 

Anonymization and Pseudonymization, external (Cloud) communication connectors 

and (optionally secure) Data Lakes. Data lakes/stores can be distributable components to 

be packed into deployment units, e.g., to buffer data on edge devices. 

• Reusable Intelligent Services Layer: The components described so far (as well as not 

mentioned administrative services provided by the platforms) can be used to develop simple 

applications similar to existing platforms [27]. This layer shall pave the way for open, extensible 

and reusable intelligent services. The Data Integration collects data from running services 

(as defined during the orchestration) and integrates the data with additional information such 

as floor plans, order data etc. The integrated information may be stored in storages provided 

by the Data Lake component(s). The actual functionality of this component in the context of 

a running application is also defined in the platform configuration. Finally, the AI-Toolbox 

shall contain re-usable AI services that can be parameterized and orchestrated to form a 

running application. 

• Configuration Layer: The configuration layer contains components to manage the platform 

configuration. The Configuration component is responsible for composing reusable and 

application-specific services and representing the information in terms of the application 

specific-modules of the platform configuration. The Deployment component is responsible 

for deciding which services shall be executed by which device (e.g., edge, server or cloud) 

depending on runtime information available in the platform configuration. Based on these 

decisions and device-specific information provided by a device AAS, deployment containers 

are created automatically and made available. Furthermore, the Deployment component 

shall take the dynamic state of the platform reflected in the platform configuration into 

account to optimize the container/service deployment at runtime, e.g., supported by 

generated service glue code or dynamic re-routing of data by the Transport and Connection 

Layer or the Streaming Library. In addition, the Adaptation component is responsible 

to decide about configuration changes to deployed services as well as selection of alternative 

services at runtime (supported by similar mechanisms as for runtime deployment adaptation).  

• Applications Layer: Ultimately, a (simple) platform user interface (UI)27 relying in particular on 

components of the Configuration layer as well as AI-enabled applications run on top of the 

platform. Applications are described by configuration modules and may ship with application-

specific components, e.g., AI services or monitoring probes. Although not visible here, glue or 

transport code generated for orchestrated services implicitly belongs to the applications. The 

                                                             
27 As discussed in [8], user interface and dashboards are formally out of scope of our funding contract. 
However, if feasible, we plan to realize at least a simple (Web) user interface in one of the next releases. 
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execution of the applications shall be visualized by (as far as feasible) generic Dashboard 

components. Further, external AAS-based access to selected aggregated information of the 

platform can be made available through secure mechanisms, e.g., IDS.  

International Data Spaces (IDS) [16] is a virtual data space leveraging various standards, technologies, 

and governance models to enable secure and standardized data exchange in a trusted environment. 

IDS offers a decentralized data storage where several companies share data through IDS Connectors. 

Moreover, IDS allows to deploy various internal and external applications into the IDS Connectors in 

order to provide various services on top of data exchange processes. Furthermore, IDS introduces a 

so-called security profile indicating the capabilities of a Connector to maintain this secure and trusted. 

As discussed above, security is usually cross-cutting, i.e., while individual mechanisms may enhance or 

wrap IIP-Ecosphere platform connectors, e.g., to act as IDS connectors, other mechanisms may be 

more on the central side, such as an integration with the IDS data storage. 

The full stack shown in Figure 1 is not required for all kinds of installations. E.g., on a resource such as 

an edge device, a cloud or a server, a specialized runtime is needed (ECS runtime from [30]) to take 

control over containers and services. The ECS runtime can be composed from a subset of the layers as 

indicated in Figure 2. The basic layers such as Support as well as Transport and Connectors must be 

present (from the Support Layer also mechanisms for dynamic network management). For managing 

containers, at least the deployment unit from the Resources and Monitoring Layer is needed. However, 

the Services Layer is optional for an ECS runtime, at least in the same container. If an ECS runtime 

installation also ships with all dependencies needed to run the configured services (e.g., Python and AI 

libraries), then it might make sense to also have the service manager from the Services Layer present. 

Otherwise, the Services Layer shall optionally be executable in an own container, based on the Support 

as well as Transport and Connectors Layers. This container would then be under the control of the ECS 

runtime, i.e., the local Resources and Monitoring Layer. 

 

Figure 2: Layers and components required to build an ECS runtime. 

The Java 1.8 restriction stated in Section 2 applies in particular to the layers shown in Figure 2 in order 

to enable compliance with unknown edge devices. Although execution on edge devices shall be 
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virtualized in terms of containers (see [8], in particular R30), it may also be required in some settings 

that the ECS runtime is directly executed by a Java virtual machine on the edge device. As far as we 

could see at the point in time when designing the architecture of the IIP-Ecosphere platform, this is no 

significant limitation as relevant (client) libraries for AAS, IoT protocols or connectors or data streaming 

can be used there. However, we are also aware of the fact that in particular for testing further (broker) 

libraries may be required, where e.g., the restriction to Java 1.8 may not be fulfilled. This can be 

mitigated to some degree, as in an installation also equivalent functionality in terms of native programs 

or other programming languages are available and may be used. As also stated in Section 2, this 

constraint may be relaxed for the remaining layers shown in Figure 1. 

3.1.1 Relation to Reference Architectures 
IIP-Ecosphere aims at interrelating and adhering to reference architectures such as RAMI 4.0 [26]. 

Although we use an own naming of the platform layers, they map nonetheless to layers defined by 

RAMI 4.0 as summarized  in Table 1. However, it is important to recall that the IIP-Ecosphere platform 

shall be a virtual platform, i.e., it shall in particular (be able to) build on existing installations without 

implementing a complete IIoT platform. Thus, it is not relevant to meticulously adhere to all RAMI 

levels, in particular not to the lower levels targeting field devices (as already scoped out in [8, 30]). In 

addition, our architecture includes some (crosscutting) layers that do not directly fit into the picture of 

RAMI28, but are important to operations, research and contributions of IIP-Ecosphere. 

Table 1: Mapping RAMI 4.0 and the IIP-Ecosphere architecture 

RAMI 4.0 Axis RAMI 4.0 Level IIP-Ecosphere Layer/Component 

Layers Asset Not in scope [8, 30], represented through edge AAS 

Integration Support Layer, Transport and Connectors Layer 

Communication Services Layer 

Information Reusable Intelligent Services Layer 

Functional Application Layer 

Business On top of Application Layer via Applications AAS 

Hierarchy Levels  Product Not in scope, represented by data 

Field Device Not in scope [8, 30], represented through edge AAS 

Control Device ECS runtime [30] with deployed services, in particular 
Resources and Monitoring Layer with contributions from 
upper layers 

Station ECS runtime [30], possibly with access to more powerful 
resources or UI capabilities for executing or controlling 
deployed services. Includies Resources and Monitoring 
Layer with contributions from upper layers 

Work Centers Reusable Intelligent Services Layer, in particular Data 
Integration component 

Enterprise Application Layer 

Connected World On top of Application Layer via Applications AAS, 
including connected IIP-Ecosphere platforms 

Life Cycle Value 
Stream 

Type Component and AAS types prescribing structures 

Instance Deployed component and AAS instances 

 

In term of the Industrial Internet Reference Architecture [18], this document can further be 

understood as a continuation of the usage view(point) [30], the functional view [8] In terms of a 

platform architecture as well as its implementation. 

                                                             
28 Crosscutting aspects are better covered by IRA [18]. 



 

 

18 

IIP-Ecosphere Platform Handbook 

3.1.2 Asset Administration Shells 
The IIP-Ecosphere platform aims at complying with, integrating of and extending existing standards 

and technologies in I4.0 (R7, R14). This applies to protocols, formats but also “interface” standards 

such as the Asset Administration Shells (AAS). For short and without aiming for a complete description, 

an AAS can be seen as information model, which consists of nested sub-models and asset specification. 

Sub-models may consist of typed properties, operations and heterogeneous collections of sub-model 

elements. AAS and sub-models can be classified as static (all information is determined when creating 

the AAS), dynamic (some information may change at runtime) or active (callable operations are 

provided). Similarly, properties and operations can be static or dynamic, whereby in the dynamic case 

both element types can be linked to an implementation, e.g., provided by a remote implementation 

server, and thus change value (access) or implementation over time.  

According to the requirements (R7), the IIP-Ecosphere platform shall describe all (distributable) 

components, interfaces, functions and deployment targets in terms of AAS. Thus, each of the discussed 

layers will provide one or more AAS (sub-models) to link the layers against each other. As far as 

feasible, the IIP-Ecosphere platform will utilize existing approaches and standards to define the AAS, 

but also define own ones where needed, e.g., to characterize the capabilities of deployment targets 

such as edge, server or cloud devices [30]. We will detail the platform AAS and its structure in Section 

5. 

 

Figure 3: AAS deployment options (D1 remote deployment, D2 local deployment) 

As typically several distributed compute resources are involved in a platform installation and each 

compute resource shall be described with an own AAS (model, sub-model or as part of joint model/sub-

model), it is helpful to introduce now two basic AAS and component deployment patterns. Figure 3 

illustrates the central IT side (the “Platform AAS server”) and two distributed resources D1 and D2, 

e.g., edge devices. An AAS can be served locally and only be registered in a central registry or it can be 

deployed remotely to a central server. Serving an AAS locally requires a related web server process 

(“Resource AAS server” in D2), i.e., a further process to be executed on a resource. Deploying an AAS 

centrally avoids such local server processes, but may lead to increased communication with the central 

server and, in the case of dynamic or active AAS that allow for dynamic properties and operation calls, 

also to redirections of requests via the central server to the resource. To handle requests of dynamic 

or active AAS, the resource must run a (further) server instance, the “Resource AAS command server”. 

A similar server process must exist on the central IT side of the Platform AAS server to offer dynamic 

properties or operations. In the resource case, this “Resource AAS command server” may forward 

operations to further processes, or, if the processes are already known when the resource AAS is 

constructed, also specific server processes, e.g., for the service control running in an own container, 

can be linked to the AAS and directly contacted to serve AAS requests. 

Platform AAS server
(registry, central AAS)

Resource AAS command server

ECS runtime Service control
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3.1.3 Virtual Character of the Platform 
As stated in Section 1, the IIP-Ecosphere platform shall be designed as a virtual platform (R3), i.e., a 

platform that offers services on top of existing already installed platform functionality. The idea is that 

the Connectors component in the Transport and Connection Layer map relevant underlying platform 

information and functionality into the IIP-Ecosphere platform. Where feasible, this mapping shall 

happen in the form of AAS as it allows for an overarching information model, but also further 

approaches like OPC UA or MQTT may be used. We see here three alternatives, focusing on AAS as the 

default approach, potentially using a transport protocol like MQTT for high-speed data connections: 

1. An underlying platform provides its own AAS and manages the access to selected functionality 

and data. Theoretically, this AAS could be mapped side-by-side into the AAS of the IIP-

Ecosphere platform. Then, layers such as deployment device management, or monitoring 

could directly utilize the information. Therefore, a standardized AAS structure for 

manufacturing platforms would be desirable, but such a standard currently does not exist. 

2. The AAS connector of the IIP-Ecosphere platform can map the AAS of the underlying platform 

into the format of IIP-Ecosphere. Of course, this adds additional overhead and in some cases 

a mapping may not be possible at all. 

3. One of the other IIP-Ecosphere connectors provides a protocol that allows mapping the 

underlying platform and its operations into the IIP-Ecosphere AAS format. This approach may 

require manual programming, while the second approach might be realized easier through 

mapping and code generation. 

Besides having the AAS of an underlying platform available, relevant components of the IIP-Ecosphere 

platform, in particular the resource management and monitoring component are required to operate 

with multiple AAS instances (for now based on the IIP-Ecosphere AAS structure). 

3.2 Development Streams 
Realizing the IIP-Ecosphere platform in one big shot is not realistic. As already indicated in the previous 

sections, we rely on incremental and agile development, so that delayed concepts, designs and results 

can be integrated flexibly, e.g., after initial experimentation with the available platform components. 

For the increments, we identified three development streams as indicated in Figure 4.  

In the first stream, we aim at the basic functions, i.e., support for creating AAS, data transport, data 

connectors, basic service interfaces and management as well as the environment for running services 

on edge, cloud or server installations (ECS runtime). In agile spirit, these realizations must be functional 

and tested but not complete, e.g., it is more important to start/stop dependent services/containers 

rather than to perform a runtime migration of services or containers.  

In the second stream, advanced functions are added and functionality missing from the first 

development stream may be realized. At latest, missing functionality will be integrated with the 

improved and advanced functions in the third development stream.  

We do not indicate a detailed time schedule for the streams or functionalities here. The first 

development stream was completed in Spring 2021, the first release of the second stream shall be 

available in Summer 2021 (along with this version of the handbook) while the second development 

stream shall mostly be completed until end of 2021. Each stream shall be manifested by at least one 

release of the platform. At the point in time when this document is published, the first development 

stream (basic functions) is completed and basic versions for selected components of the second stream 

(configuration and the configuration model, artifact generation and service/resource monitoring) are 

available. 
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Figure 4: Development streams for the IIP-Ecosphere platform 

3.3 Overall Requirements 
In general, all platform layers and components discussed below must take the following general 

requirements from [8] into account: 

Table 2: General platform requirements in [8] 

Requirement Summary 

R1 Vendor and technology neutral platform 

R2 Use of standards 

R3 Design as a virtual platform 

R4 Design based on components and services 

R5 Use of Open Source, with respect to the licensing rules of IIP-Ecosphere 

R6 Open for optional/commercial components 

R7 Use of AAS for interfaces 

R8 Use of systematic variant management techniques 

R9 Means for availability 

R10 Soft real-time processing (<100 ms) for production-critical functions 

R11 Documentation (also in terms of this handbook) 

R12 Documentation of processing steps (of applications, supporting data privacy) 
 

As already indicated in Table 2, [8] also specifies quality requirements such as R10. Besides security 

and data protection requirements, there are also data frequency and volume requirements that are 

not so obvious, in particular as they are assigned to specific topics/components of the architecture in 

[8]. To provide an overview, we discuss them here on a global level for the entire platform. 

In Table 3, we summarize the cross-cutting quality requirements, i.e., in particular those that may 

require specific considerations regarding time-critical functionality such as the (stream) processing or 

data transport. Although the IIP-Ecosphere platform aims at the deployment of components to edge 

devices, both, the services as well as the platform operations there belong to the IT realm so that OT 

requirements such as R35 or the OT sensor sampling frequency mentioned in R28 do not directly apply. 

However, a machine pulse of 8 ms (R28) as well as an hourly throughput of 7 GByte as well as an 

expected size of data items with 50 values (R19a) are highly relevant for judging the performance of 

the IIP-Ecosphere platform. As also mentioned in [8], not all data volume and frequency requirements 

were indicated while collecting the requirements from the partners, i.e., the platform shall aim for 

even higher speed (such as a 50 ms cycle time) or a throughput of 600 GByte per day. 

It is also important to recall from [8], that the IIP-Ecosphere platform is primarily responsible for its 

mechanisms and included services, i.e., providers for services to be packaged with the platform will 

have to obey the quality requirements in [8] and in particular Table 5. Further, as also discussed in [8], 
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the platform is not responsible for the quality of external services, e.g., application-specific or user-

specific services (while measures may apply to report or terminate services that potentially taint given 

runtime requirements). 

Table 3: Overview of (global) quality requirements on data frequency and volume 

As an illustration, we discuss the quality requirements now in terms of hypothetical numbers. From 

the data transport perspective, the requirements command that each machine can ingest a data item 

with around 50 values each 8 ms, i.e., 125 messages per second. This leads to at least 450.000 

messages per hour (per machine/edge device). If we assume a size of 654 Byte payload (actual size of 

a simple JSON serialization of such as message), a source produces around 280 Mbyte per hour (just 

focusing on the raw data payload, i.e., not on additional information, e.g., for routing or meta-

information as stated in R79). On a platform-level (R91, R22), aggregating components of the IIP-

Ecosphere platform will have to cope with multiple parallel streams of this kind, which requires 26 

such streams to reach the requested 7 Gbyte (in a real setting with payload and overhead). Of course, 

the distribution may be different, i.e., more streams at lower ingestion frequency or less streams at 

maximum frequency, potentially with image payloads, to reach several hundreds of GBytes per hour. 

In the discussion of the individual layers/components, we will refer to these general requirements and 

re-iterate the argumentation only for affected layers or layers that already have been (initially) 

evaluated. 

3.4 UML Profiles 
The IIP-Ecosphere architecture model is based on three UML profiles, the IIP-Ecosphere profile 

introduced in Section 3.4.1, the UMLsec [19] profile for security modeling in Section 3.4.2 as well as 

the security and privacy profile in Section 3.4.3. All three profiles aim at classifying and defining 

orthogonal information to be attached to individual modeling elements. While the IIP-Ecosphere 

profile as well as the security and privacy profile are mostly of descriptive nature, i.e., indicate 

additional information such as open source licenses and component versions, the UMLsec profile is 

the basis for automated security analyses of UML models using the CHARiSMA tool. 

3.4.1 IIP-Ecosphere Profile 
The aim of the IIP-Ecosphere profile is to classify and categorize modeling elements in the IIP-

Ecosphere architecture, i.e., to express orthogonal semantics in a uniform manner.  We will now briefly 

discuss the individual concepts and parts of the profile.  

Requirement Summary 

R10 Soft realtime, response time < 100 ms for production critical functionality 

R19a Sample data set of 50 values of different types all 20-30 s 

R19e Output data shall be provided all 5 s 

R21 Low impact on data throughput 

R22 Overall platform throughput of 500 GByte per year 

R28 OT sensor sampling frequency 0.2 ms, machine pulse 8 ms, step pulse 5 s, process 
pulse 25 s (mentioned in the explanation of the cloud requirement R28) 

R35 OT sampling frequency of 2 ms 

R91 7 GByte per hour as input for data integration, which may be aggregated to 2 
Gbyte per hour. 
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Figure 5: AAS stereotypes in the IIP-Ecosphere profile (comments cropped). 

One cornerstone of the IIP-Ecosphere platform is the exploration and use of Asset Administration 

Shells (AAS, R7 in [8]). The partners decided to use AAS in particular to describe interfaces of the 

platform (internal, external) and communication with these interfaces in a standard-based uniform 

approach29.  Thus, from an architectural point of view, it is relevant to model (structural) AAS aspects. 

We use AAS in terms of classes, interfaces and operations tagged by the stereotypes depicted in Figure 

5. A class/interface can be marked by the «AAS» stereotype to express that there shall be an AAS 

providing access to the contained data. An «AAS-DataConnector» is a communication endpoint30, 

e.g., for soft-realtime (streaming) connections. Such endpoints that are currently not part of the AAS 

standard31. An «AAS-Property» is a static or dynamic attribute of an AAS. UML properties may also 

indicate that a substructure (i.e., an «AAS-SubModel») shall be exhibited by an AAS. Moreover, AAS 

may describe functional interfaces using the «AAS-Operation» stereotype.   

Moreover, an «AAS-Client» is per se not an AAS element. In the IIP-Ecosphere platform, an AAS-

Client is a supporting class implementing how to access properties or how to execute operations. 

These classes shall be defined along with the respective AAS and can be tested directly against the 

AAS. 

As our approach to modeling is pragmatic and agile, we do not aim at covering all possible aspects of 

AAS. Please note that the stereotypes just indicate that the respective information shall be represented 

in a realizing AAS. We do neither model the concrete names used in a realizing AAS, the completeness 

of models or sub-models nor any sequence of contained AAS elements. Besides properties that can 

change their value at runtime or sub-models that occur on demand, dynamic relations among AAS 

elements can be modeled by dependencies marked with the AAS-dynamic stereotype. 

A second cornerstone are services, in particular to encapsulate platform functionality or (re-usable) AI 

methods. According to the profile (Figure 6), a service can be modeled as an interface (with 

implementation aspects hidden) or as a class (i.e., a namespace with properties and operations). 

Related to services are (platform) connectors that ingest data into the platform or are involved in 

offloading data/processing to other platforms or a cloud. Typically, for one connector type multiple 

alternatives are offered and also additional connectors can be added (openness, e.g., R14, R16). To 

indicate these elements, the profile contains a generic «Connector» stereotype that can also be used 

to indicate Cloud connectors and (for security) optional IDS connectors. 

                                                             
29 Design guidelines for AAS must still be agreed upon by the partners or discussed with other projects. 
Although this affects the implementation, the actual AAS design guidelines are outside the scope of the 
architecture, i.e., we focus here just the relevant aspects such as properties, operations and 
links/dependencies. 
30 Following [30], we do not use the term “endpoint” in this document rather than “data connector”. For links 
among data connectors and endpoints, we use the terms “relation” [30], “data flow” or “data path” [8]. 
31 There is ongoing work on standardizing communication endpoints. If possible, we will adopt this upcoming 
standard in a later release. 
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Figure 6: Service and connector stereotypes in the IIP-Ecosphere profile (comments cropped). 

In IIP-Ecosphere, services shall be deployed in terms of virtualized containers. Therefore, 

implementing elements can be marked as «Container» (Figure 7). Further, besides services, 

individual platform components can be marked as «Distributable» while parts not marked as 

«Distributable» shall remain part of a central platform installation. 

 

Figure 7: Container and distribution stereotypes in the IIP-Ecosphere profile (comments cropped). 

To simplify the models, i.e., to avoid repetitively modeling of typical mechanisms or collaborations, the 

profile allows indicating architecture, design or implementation patterns32, to explain/detail a model 

element in an uniform manner, but also to guideline the implementation. Figure 8 depicts simple 

patterns like architectural layers33, delegation of control to another element via an association, read-

only attributes (without corresponding setter)34, builder pattern35 (or classes that shall use this pattern 

to realize read-only attributes) or visitor pattern36. Figure 9 illustrates stereotypes for marking an 

object factory37 (an exchangeable mechanism that creates instances) or plugins as one form to extend 

platform functionality at defined points. A «Plugin» is detailed by a «PluginType» providing more 

information on how to implement/register the plugin. The default type is JSL, the Java Service Loader38, 

a simple mechanism on an implementation to its (descriptor) interface without direct dependencies in 

code. These patterns support the openness of the platform, e.g. extensibility for optional components 

in R6 [8]. 

 

                                                             
32 An important reference here is the GoF book [11], but for simplifying the understanding, we just provide 
some Web references. 
33 https://en.wikipedia.org/wiki/Multitier_architecture  
34 UML and Papyrus offer a read-only meta-property of the meta-class Property. However, displaying this 
information in the diagram is tedious, so we just define the corresponding stereotype read-only. 
35 https://en.wikipedia.org/wiki/Builder_pattern  
36 https://en.wikipedia.org/wiki/Visitor_pattern  
37 https://en.wikipedia.org/wiki/Factory_method_pattern  
38 https://docs.oracle.com/javase/9/docs/api/java/util/ServiceLoader.html  

https://en.wikipedia.org/wiki/Multitier_architecture
https://en.wikipedia.org/wiki/Builder_pattern
https://en.wikipedia.org/wiki/Visitor_pattern
https://en.wikipedia.org/wiki/Factory_method_pattern
https://docs.oracle.com/javase/9/docs/api/java/util/ServiceLoader.html
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Figure 8: Basic architecture/implementation patterns in the IIP-Ecosphere profile (comments cropped). 

 

Figure 9: Factory and plugin/registration patterns in the IIP-Ecosphere profile (comments cropped). 

Due to the AI nature of IIP-Ecosphere it is important to recognize that code written in various 

programming languages and under licenses must be integrated (R5, R6, R113 in [8]). The stereotypes 

in Figure 10 allow indicating these two dimensions also to locate potential pitfalls. External 

components not marked with the OpenSource stereotype are meant to be commercial/proprietary 

and shall be only used as alternatives rather than mandatory or default components, i.e., their 

installation shall be left to the user’s choice. «OpenSource» components are characterized by their 

license(s) and their version. If no version is indicated, no decision was made so far, i.e., the 

component was not integrated so far. 

 

Figure 10: Licenses and programming languages in the IIP-Ecosphere profile (comments cropped). 

Within the architecture model, it is also relevant to mark the maturity status of individual parts, e.g., 

to distinguish initial models from detailed models that are actually implemented (Figure 11). Some 

parts (within models) may not have been realized so far and can be marked with «Omitted». The 

maturity status can be attached to a model or individual modeling elements if applicable, but in 

particular also to comments. We use comments to document the aim/contents of each UML diagram 

(often cropped in this document) and may then attach the maturity stereotype to that comment.  
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Figure 11: Maturity status for comments, packages or models. 

Another special contribution of the IIP-Ecosphere platform is to aim for an encompassing and 

consistent configuration model that ranges from devices over services to service orchestration and 

covers static pre-runtime and runtime aspects, e.g., for deployment optimization or self-adaptation 

(R120-R126, R107 in [8] as listed in Section 3.1). We use the Integrated Variability Modeling Language 

(IVML) [7] to describe the configuration model and we indicate aspects of the variability modeling in 

the architecture models. IVML is realized in terms of the EASy-Producer [31] toolset, an external open 

source component that we integrate into the IIP-Ecosphere Platform. For short, the IVML configuration 

meta-model of IIP-Ecosphere (represented as information items marked with the IVML stereotype 

shown in Figure 12) defines the structure, configuration options and validity criteria for all potential 

platform instances. The configuration (also an IVML model) instantiates the meta-model and details 

the configuration decisions for a specific platform instance, e.g., on which server the platform AAS will 

be located, which concrete services are available etc. One particular architectural aspect is the 

structure of the IVML (meta-)model and its relation to the layers of the platform. The (meta- and 

configuration) model consists of individual modules (called projects). We specify this decomposition 

of the configuration model into modules (represented as information items tagged with «IVML») in 

terms of dependencies decorated with «IVML-Import». Ultimately, mechanisms of EASy-Producer 

will validate the configuration and automatically modify, include, exclude, generate or package 

artifacts that finally make up the configured platform instance.  

A further architecturally important aspect are the components and classes realizing the variations 

defined in the configuration model (i.e., the implementation parts to be included, excluded, modified, 

linked with glue code etc.). We use the Software Product Line [32] notion of «Alternative» or 

«Optional» artifacts and mark the respective components using the stereotypes shown in Figure 12. 

Examples are alternative transport connectors (one must be selected) or optional components (that 

can be part of the platform instance or not) such as IDS or cloud connectors. As these stereotypes are 

intended to be illustrative and explanatory rather than for defining a configuration or an artifact model, 

we do not include further variability details as done in typical variability profiles, e.g. in [33, 12]. In 

particular, components marked with «Alternative» or Optional shall be designed and 

implemented carefully with respect to their dependencies, i.e., leaving out an «Optional» 

component or replacing an «Alternative» component must not render a platform instantiation 

invalid unless the governing configuration is invalid. 
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Figure 12: Configuration modeling and variability management stereotypes (comments cropped). 

One form of instantiating a configuration model is to generate code, e.g., data transport code or 

glue/binding code between a hand-crafted implementation and platform interfaces to ease the 

development of consistent applications. To indicate that parts of the architecture are intentionally left 

open as they will be filled through generation from the platform configuration model during platform 

instantiation, we mark these parts by the «Generated» stereotype shown in Figure 13. 

 

Figure 13: Stereotype for generated code (comments cropped). 

The IIP-Ecosphere platform shall provide self-adaptive capabilities at runtime based on the (runtime 

part of the) configuration model (see R102-R109 and R120-R126 in [8]). Examples of platform elements 

that could be adapted are container deployment locations or actual AI services used in the same 

deployment location. To indicate model elements that are related to adaptation, the IIP-Ecosphere 

profile defines the stereotype «Adaptation» (Figure 14). One particular example for the application 

of this stereotype is to mark states in a state diagram that would not be needed without self-

adaptation functionality, but which are required for self-adaptation. 

 

Figure 14: Marking model elements as support for self-adaptation. 
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In some situations, we also include experimental components in the architecture, in particular to 

introduce a certain concept that is used later on in the discussion, e.g., in a validation. To indicate such 

experimental components, we utilize the stereotype shown in Figure 15. For various reasons, 

experimental components may not be found in the IIP-Ecosphere source code repository and they may 

also not be subject to the continuous integration. 

 

Figure 15: Marking experimental components 

In Papyrus, it is possible to define a stylesheet to adapt the formatting of modeling elements based on 

the applied stereotypes. We will use this mechanism to mark important stereotypes, e.g., issue 

comments or omitted elements, in a uniform manner such as uniform fill or text colors.  

3.4.2 UMLSec Profile 
UMLsec39 provides a model-based approach to develop and analyze security critical-software, in which 

security requirements such as confidentiality, integrity, and availability are expressed within UML 

diagrams. The UMLsec language is provided as a UML profile and can be imported into existing UML 

tools. In UMLsec, different stereotypes and tags are used to annotate UML diagrams with security 

properties. UMLsec provides various security checks to ensure the annotated properties. The CARiSMA 

tool performs the corresponding security checks. The idea of UMLsec is to provide maximal analysis 

power while allowing to use everyday development tools for the development process.  

While the UMLsec profile is defined as a light-weight UML extension, it is also possible to define it using 

heavyweight extensions to specify the change of semantics. One can make use of an extended 

metamodel (analysis model). This analysis model provides the possibility of more complex analysis by 

extending the basic UML metamodel.  

As mentioned above, UMLsec provides different security checks to verify whether a security property 

in a system is violated, and a security mechanism is needed to restore it. In this document, we explain 

two security checks, namely secure links and secure dependency. Secure links is used for the description 

and the analysis of secure data flows over connections between the artifacts in a UML deployment 

diagram, which describes the physical layer of a system. Secure dependency ensures that various 

dependencies between interfaces in a structure of a system model respect the security requirements 

of the data communicated across them.  

3.4.2.1 Secure Links Check 

The physical layer of a system is modeled by a deployment diagram, including physical nodes, the 

communications between them (modeled by links), the (software) artifacts and the dependencies 

between the artifacts. The secure links annotation enables one to ensure the security of 

communications in a physical layer.  

In UMLsec, to perform a security check, adversary patterns are required. Such patterns specify the 

potential access paths threatened by a certain attacker. Table 4.1, represents the default adversary, as 

                                                             
39 https://rgse.uni-koblenz.de/jj/umlsec/  

https://rgse.uni-koblenz.de/jj/umlsec/
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an example of an adversary pattern. For a given adversary of type A, the set ThreatA(s) specifies which 

kinds of actions the adversary can apply to a node or a link marked with the stereotypes. For example, 

considering an unencrypted internet communication link, the default attacker 

(Threatdefault(internet)) can delete, read and insert messages transmitted over this link.  

 

Figure 16: The UMLsec default adversary pattern 

The stereotype «secure links» implies the following conditions: for each dependency annotated 

with stereotype s ∈ { «secrecy», «integrity», «high» } between two artifacts deployed on two 

nodes n, m, we have a communication link l between n and m with stereotype t such that:  

• s = «high», implies that threatA(t) = ∅, 

• s = «secrecy», implies that read ∈/ threatA(t), and  

• s = «integrity», implies that insert ∈/ threatA(t).  

For instance, if a communication link between two nodes n, m are annotated with «internet», and 

the dependency between two artifacts a1 (deployed on node n) and a2 (deployed on node m) are 

annotated with «high», then the security constraint associated with the stereotype «secure 

links» is violated: the dependency annotated with «high» demands that the set of threats of an 

adversary is empty, however, the communication link is annotated with «internet», meaning that 

the adversary is capable of reading, deleting, or inserting messages over the link between n and m. 

Consequently, the security requirement of the communications is not supported.  

3.4.2.2 Secure Dependency Check 

In UML, a dependency between two model elements is a relationship that denotes a model element 

requires other model elements for its specification or implementation. In other words, the complete 

semantics of the client element is either semantically or structurally dependent on the definition of 

the supplier element. The stereotype «secure dependency» implies that the security requirements 

have to be supported by both sides of the dependency (respective classifiers) and the dependency 

itself.  

Later in this document (within the data security layer) we describe the UMLsec profile within the 

architecture model of the IIP-Ecosphere. Furthermore, we show how a CARiSMA check can be 

performed on such models to verify the security level of the architecture models. 

3.4.3 Security and Privacy Profile 
To enhance the security and privacy of the platform, we create a dedicated Security and Privacy UML 

profile. The purpose of this UML Profile is to provide a catalog of security and privacy mechanisms to 

annotate corresponding UML models and the architecture of the platform. With such an annotation 

process, we can express appropriate mechanisms on a high abstraction level. In this way we give an 

overview of a complete security and privacy framework to the developers and designers of the system. 

Furthermore, this dedicated profile enables privacy and security audits. Audits lead to increased 

software quality. 
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The catalog represented by the profile introduces a means to structure privacy and security 

mechanisms in multiple abstraction levels. Namely, design strategies, sub strategies, patterns, and 

privacy enhancing technologies (PET) that can be applied to design of the platform. 

The feature model in Figure 17 shows the four abstraction levels of the privacy and security concept. 

A feature model describes a set of features and their relations, here privacy and security features and 

their relations. The main structure of the feature model is hierarchical. But there are relations that do 

not follow the hierarchical structure. Some features may require other features. For example, 

Authorization requires Authentication. Other features may exclude each other, for example, 

Anonymity Set and Notify. 

 

Figure 17: An excerpt of the feature model including privacy design strategies, sub-strategies, privacy patterns,  
and PETs (cf. [1] Figure 6.5). 

 

Figure 18 shows the UML privacy and security profile we created based on the feature model shown 

in Figure 17. We adopted the hierarchical structure of the feature model and recreated it in terms of 

a UML profile. The profile has the same 5 levels as shown in the feature model, the root level 

PrivacySecurity, the Strategy level, Sub Strategy level, the Pattern level and the PET level. 

For each level we defined to what elements in the model the stereotype can be annotated with that 

stereotype. For example, we can use the «Privacy» security stereotype to annotate components and 

packages. Stereotypes from the strategy level, like Hide, can additionally be used to annotate classes 

and interfaces. 
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Figure 18: The Privacy and Security UML Profile (excerpt, cropped). 
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We discuss now specific examples on how the stereotypes from the UML privacy and security profile 

can be used. In IIP-Ecosphere, the profile can be used by business partners to communicate with each 

other about business secrets or to communicate with expensive production equipment. Unauthorized 

access to the system can cause severe damage to the companies using and trusting it.  

We will now use the stereotypes to annotate our model with the role-based access control (RBAC) 

stereotype. In RBAC, the access rights are assigned to roles. Then individuals are assigned to the roles. 

This has multiple advantages over assigning roles directly to individuals. RBAC is a privacy enhancing 

technology. In our hierarchy, the RBAC PET is located in the Minimize Strategy, the Restrict Sub 

Strategy and the Authorization Pattern. 

Figure 19 shows an interface (to be introduced in Section 3.6.3) annotated with the 

«Authorization» stereotype, and in that interface the write method is annotated with the RBAC 

and the Log stereotype. 

 

Figure 19: Interface annotated with Privacy and Security stereotypes 

Figure 20 shows how the serialization package (to be introduced in Section 3.6.2) is annotated with 

the «Hashing» and «Signing» stereotypes. The contents of the package has been omitted in order 

to focus on the stereotype application. Serialization is one important part of storing, loading and 

transmitting data. With «Hashing» we can increase the integrity and with signing we can verify the 

origin of the data. 

 

Figure 20: Package annotated with Privacy and Security stereotypes 

Table 4 shows an excerpt of strategies, sub strategies, pattern and PETs that are suitable for the 

system. The design strategies, patterns, and privacy enhancing technologies are based on the work of 

Ahmadian [1]. The strategies are adapted from Hoepman [15]. 
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Table 4: Design strategies, patterns, and privacy enhancing technologies for the IIP-Ecosphere architecture.  
(cf. [1] Appendix F). 

Strategy Sub Strategy  Pattern PET  

Minimize 
Strip  Authentication  

Destroy  Limited Data Retention  

Hide 

Restrict Authorization RBAC, Cryptographic Protocols, VPN 

Mix Hashing  

Obfuscate Added Noise Measurement  

Dissociate Pseuodnymous Identity  

Separate 
Distribute Private link 

Private Data private Device, 
Secure Storage 

Isolate Confinement Pattern Isolate Sensors from System 

Demonstr
ate 

Audit  
  

Audit interceptor  

Signing   

Log Secure logger  

 

3.5 Support Layer 
The Support Layer aims at providing useful common functions and abstractions to ease the realization 

of the IIP-Ecosphere platform. Thus, it is more a support library than a full layer, i.e., it does not provide 

an own AAS representing the interface of the layer. However, even as a support library it is used by 

the Transport and Connection layer, i.e., the support functionality logically forms an own layer. Below, 

we detail the AAS abstraction in Section 3.5.1, the network manager in Section 3.5.2 and the lifecycle 

support in Section 3.5.3. 

3.5.1 Asset Administration Shell Abstraction 
A core aim of the Support Layer is to abstract over the used AAS implementation. This allows for 

flexibility (the AAS implementation can be exchanged), but also to mitigate risks of impacts by the 

currently evolving AAS standard and its implementations. Thus, the abstraction described here aims at 

supporting the application of AAS for the description of interfaces (R7), the application of standards 

(R2) and enables openness for different AAS implementations, including potential upcoming 

commercial implementations (R6). Further, an abstraction contributes to the IIP-Ecosphere goal of 

increasing interoperability, as currently several AAS implementations do exist that potentially do not 

interoperate (see LNI Testbed Asset Administration Shell40). Thus, an abstraction also mitigates 

development risks, as the current rather dynamic external implementation activities may lead to 

partially disruptive technical changes. 

Figure 21 depicts the three parts of the support layer. The core is the aas component, which defines 

the IIP-Ecosphere abstraction of AAS. The iip-aas component on top utilizes the AAS abstraction to 

add further functionality that eases the realization of the IIP-Ecosphere platform, e.g., mechanisms 

how to dynamically link alternative and optional AAS sub-models of different components into the 

platform AAS. We employ BaSyx as the default AAS implementation of the IIP-Ecosphere platform. The 

aas.basyx component implements the interfaces defined by the aas component and provides a 

factory implementation to transparently instantiate abstract concepts based on the underlying BaSyx 

implementation. As BaSyx ships with a large number of dependencies and not all of these 

dependencies may be needed on an edge device, e.g., when deploying an AAS remotely to a central 

server (cf. Section 3.1.2) persistent storage to a database is not needed, we aim for a dependency-

reduced aas.basyx component and an aas.basyx.server component including all dependencies.  

                                                             
40 https://lni40.de/lni40-content/uploads/2020/11/AAS-testbed.pdf  

https://lni40.de/lni40-content/uploads/2020/11/AAS-testbed.pdf
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Figure 21: Support Layer overview (only selected classes/interfaces/operations are shown) 
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The aas component mainly consists of the instance factory as well as interfaces defining the 

functionality to be provided by an AAS implementation41. It is important to distinguish here between 

AAS interfaces (such as Aas, SubModel, Property and Operation following the AAS meta-model 

[25]) and the associated (nested) builder interfaces used to build concrete instances of these 

interfaces. The AAS interfaces provide access to the respective information and, to a certain degree, 

also allow for modifications, in particular if the interface represents a connected, deployed AAS 

element. In contrast, the builder interfaces are responsible for creating these instances, allowing for a 

concise coding style and additional consistency checks, e.g., preventing typical usage errors of the 

underlying AAS implementation.  

Instances of the AAS interfaces can only be created through the factory and the builders, i.e., the top-

most AAS-builder can be obtained from the AasFactory and all subsequent builders for nested AAS 

elements (sub-models, element collections, properties, operations) can transitively be obtained from 

the actual builder. Specific extensions to the typical AAS interfaces are the deployment support 

(DeploymentBuilder), the remote protocol support (InvocablesCreator and 

ProtocolServiceBuilder) as well as the AasVisitor. The DeploymentBuilder aims at 

realizing and encapsulating typical deployment recipes, such as local or remote AAS deployment. The 

protocol support encapsulates a specific remote communication protocol to implement the 

dynamic/active behavior of an AAS. This builder creates function objects delegating the respective 

operation to the protocol. The function objects can be attached through the aas interface to the 

underlying AAS implementation. This can happen in a straightforward manner if an AAS has direct 

access to an implementing instance such as a service. However, if AAS and implementation must be 

separated, e.g., due to remote deployment of the AAS or due to a programming language/process 

border (e.g., Python for AI services), a (remote) communication protocol must be utilized. As several 

options for such protocols do exist, e.g., REST, RMI, GRPC, etc., it is not possible just to provide a single 

protocol abstraction rather than to allow for openness. Therefore we offer a pair of interfaces, the 

InvocablesCreator being responsible for the function objects to be attached to an AAS (this is just 

a kind of factory rather than a builder) and a related ProtocolServiceBuilder being responsible 

for building up a server/service instance and registering the actual implementation functions for the 

function objects. Ultimately, the AasFactory is responsible for creating a matching pair of instances 

for a given protocol. 

In addition, the abstraction encompasses an AASVisitor. As usual, a Visitor allows traversing a data 

structure in an extensible, polymorphic manner (based on inversion of control) without knowledge 

about the structure, need for explicit alternatives over types or type casting. Moreover, visitor 

instances can be applied to any element in the data structure and, thus, perform a partial traversal. 

Further, there is usually not a single Visitor implementation rather than many, each one for a specific 

purpose. Besides the interface, we provide the PrintVisitor which emits the structure of the AAS 

in textual form in particular for testing/debugging. Further, we provide, as usual, an empty basic 

implementation, the BaseAasVisitor to be used by visitor implementations to handle changes to 

the visitor interfaces in a default manner, i.e., further AAS elements will then not per se lead to a 

compile error. 

A concrete implementation of the AAS abstraction provides an AAS factory. Except for the visitors, 

which are based on the abstraction rather than a concrete implementation and, thus, can directly be 

created on purpose by client code, instances of all other concepts can be obtained directly or indirectly 

                                                             
41 We follow a pragmatic and agile approach here, i.e., we follow the meta-model in [25], but we do not aim to 
be complete from the very beginning. We add interfaces and operations only on usage demand. Ultimately, at 
latest at the end of the IIP-Ecosphere project, the abstraction shall be complete with respect to the most 
recent, implemented version of the AAS specification. 
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from the AASFactory. Concrete AAS factories are supposed to announce/register themselves via the 

AasFactoryDescriptor and the Java service loader mechanism42, so that just the presence of an 

AAS implementation on the Java classpath enables the abstract AasFactory to create concrete 

instances. 

The default implementation of the AAS abstraction is based on Eclipse BaSyx. The aas.basyx 

component implements the interfaces, typically in terms of adapter/wrapper43 classes, i.e., classes that 

delegate the actual operations to the underlying BaSyx implementation. As remote communication 

protocol, the default implementation offers an extensible form of the BaSyx Virtual Automation Bus 

(VAB, in variants TCP, HTTP and HTTPS) through the VabIipInvocablesCreator and the 

VabIipOperationsProvider. Further, external protocols may be added using the 

ProtocolCreator (and the related JSL ProtocolDescriptor, both not shown in Figure 21). 

In an installation setting, various kinds of AAS servers may be used, e.g., in-memory servers on edge 

devices or servers with persistent storage of the AAS on a central IT side. However, the different forms 

of servers imply different dependencies, in particular, database dependencies may not be feasible in 

resource limited environments such as edge devices as already mentioned above. Thus, 

implementations of the AAS abstraction are encouraged to reduce dependencies where ever possible 

to allow for execution in all environments. For IT side installations, all dependencies may have to be 

included to allow, e.g., for persistent database storage. For this purpose, we separate the AAS 

implementation into two parts, the (client-side) AAS for all environments and the server side. To 

announce the server side, we introduce the AasServerRecipeDescriptor (not shown in Figure 

21), which, if present, hooks the server component with all its dependencies into the AASFactory 

and makes such servers transparently available. 

The iip-aas component paves the way that AAS (sub-models) for the different IIP-Ecosphere 

platform layers can be collected and deployed as a single representation of a running resource 

depending on a given deployment mode. Therefore, the iip-aas component defines the 

AasContributor interface and the AasPartRegistry. The AasContributor is a plugin interface 

supposed to be implemented by upper platform layers to create the respective AAS (sub-model) and 

to register the implementing function objects with the protocol builders. An AasContributor can 

indicate whether prerequisites are met so that its AAS can be created. Instances of AasContributor 

are supposed to be announced/registered via the JSL mechanism. The AasPartRegistry provides 

access to those plugin instances and, e.g., triggers the creation and the deployment of an entire AAS 

for an installation. Thus, interfaces marked with the stereotype «AAS» (from the IIP-Ecosphere profile, 

see Section 3.4) are supposed to be implementations of the AasContributor interface and to 

announce themselves via JSL.  

Moreover, iip-aas provides common classes to build up parts and pieces of platform AAS instances 

according to IIP-Ecosphere AAS conventions. Examples are the setup of AAS information via JAML or 

the ClassUtility which turns Java meta-classes into AAS elements and modify the information 

about available types reflected in the Types sub-model of the IIP-Ecosphere platform AAS. Akin, iip-

aas implements basic forms of AAS-client, i.e., classes that conveniently wrap access to certain AAS 

parts such as operations or properties. Subclasses shall use or refine the basic functionality to 

implement concrete accessors, e.g., operation execution. 

As far as possible, we aim for a transparent AAS integration. Therefore, platform code must utilize the 

abstraction for the aforementioned reasons. If AAS functionality is not available, new AAS concepts 

                                                             
42 https://docs.oracle.com/javase/8/docs/api/java/util/ServiceLoader.html  
43 https://en.wikipedia.org/wiki/Adapter_pattern  

https://docs.oracle.com/javase/8/docs/api/java/util/ServiceLoader.html
https://en.wikipedia.org/wiki/Adapter_pattern
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become available or the underlying implementation changes significantly, a revised/extended AAS 

abstraction may be required, which, in turn, may require changes to existing platform code.   

3.5.2 Network Support 
In addition to the AAS abstraction, the support layer also provides basic network management 

functionality, in particular for TCP port negotiation. The network manager supports two modes, based 

on registered and dynamic/free ports. Both modes are relying on a self-selected key for the respective 

port, e.g., representing a service or a channel/topic identifier. Central services can register themselves 

with a platform-wide known key. Dynamic services are supported by assigning/reserving free 

(ephemeral) ports.  

Network managers can be stacked, i.e., a parent network manager can contain (more) centrally 

registered addresses (e.g., for overarching communication brokers) while local managers focus on local 

(ephemeral) ports. The NetworkManagerAas realizes the active AAS frontend network manager 

instances, in particular for a central platform manager instance. The NetworkManagerAasClient 

implements an AAS-based access to the NetworkManagerAas, i.e., to allow implementing 

components to access a central network manager, also through stacking.  It is important to note that 

not all components rather than installations may require a network manager. Further, not all network 

managers, in particular not local instances on (edge) resources must be exhibited through an AAS. 

3.5.3 Lifecycle Support 
A further basic capability is to start up components in a uniform but extensible manner. This is 

particularly important as individual components may rely on different technology imposing different 

technological requirements on the startup process. Moreover, it supports the transparent realization 

of optional and alternative platform components. Therefore, the Support Layer defines the 

LifecycleDescriptor (not shown in in Figure 21), allowing components to do the necessary 

startup/shutdown operations, declare a startup level (priority) and, if required, stop a component. A 

LifecycleDescriptor defines a priority (akin to startup levels in Linux) and may indicates, whether 

it desires to terminate the execution of the containing platform instance upon a certain event or 

condition. A LifecycleDescriptor announces itself through JSL and is taken up by the 

LifecylceHandler. The LifecylceHandler provides generic startup classes for all components, 

e.g., with or without the ability to terminate the platform instance, which trigger a respective 

processing of the lifecycle descriptors. 

3.6 Transport and Connection Layer 
The Transport and Connection Layer is responsible for connecting resources among each other, with a 

platform installation on a central IT or even with external cloud environments. We start off 

summarizing the requirements for the Transport Layer in Section 3.6.1. Then we will turn to the two 

interrelated components in this layer, the Transport Component (Section 3.6.2) and the Connectors 

Component (Section 3.6.3). Finally, in Section 3.6.4, we will discuss the realization of the requirements 

by the two components. 

3.6.1 Requirements 
In the requirements collection [8], the transport layer is particularly characterized by the requirements 

summarized in Table 5: 
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Table 5: Specific requirements from [8] for the Transport and Connection layer (not repeating the general requirements in 
Table 2 and Table 3). 

Requirement Summary 

R13 Connectivity to other actors 

R13a Connectivity with I4.0 devices 

R13b Connectivity with I4.0 platforms 

R13c Connectivity with other IIP-Ecosphere platform instances 

R14 Open and flexible connectors 

R14a At least OPC-UA and MQTT connectors 

R14b TCP-IP support 

R14c Bluetooth LE support 

R14d Integration of connectivity at runtime 

R15 Connectors shall be as uniform as possible 

R16 Integration of connectors shall be open and flexible 

R17 Potential distribution of connectors to various devices 

R17b Management of connectors by platform 

R17c Connectors shall be parameterizable 

R18 Securing connectors 

R19 Use of a minimum set of internal data formats, examples mentioned in R19a, R19b 

R19a Example input formats (southbound) 

R19b Example input formats (northbound) 

R19c Restful APIs with JSON/XML 

R19d Example output formats (northbound) 

R19e Output data clocked in 5 second intervals 

R19f Data format conversion 

R19g Mechanisms to manipulate data 

R20 Application-specific data paths (through the configuration model) 

R21 Low impact on data throughput 

R22 Platform data throughput of 500 Gbytes per year 

R28 Machine pulse of 8 ms 

R38 Appropriate authorization mechanism 

R40 Role-based access control and TLS 

R44 IDS-based connectors (including their security profile) 

R49 Appropriate mechanisms to ensure data transfer and data sharing concerning 
principles of data protection such as legitimated purpose 

R66 Pseudonymization and anonymization of data (transferred or shared) 
# 

Requirement R19c REST-APIs is not relevant for this layer as service and layer interfaces are expressed 

through AAS, which in the default implementation form an REST-API. However, JSON and XML 

mentioned in R19c may be potential wire formats for data transport. Further, as the Transport and 

Connection Layer shall support (complex) data types in generic manner, the examples mentioned in 

the explanations of R19a, R19b and R19d in [8] are covered generically. Regarding the general platform 

requirements in Table 2, in particular, R1, R2, R5, R8 and R10 apply to the Transport and Connection 

Layer. It is important to note that the realization of (sub-)requirements referring to the configuration 

model such as R17a or R20 will be discussed in Sections 3.11 and 4, but must be prepared already in 

the Transport and Connection layer. 

With respect to the soft-realtime requirement R10, a stream-based data processing approach seems 

to be a feasible solution. This impression is supported by the successful application of such approaches 

in the Big Data domain [22] and the observation that several I4.0 platforms with (soft-)realtime 

promises typically rely on some form of stream-processing [27]. However, the streaming approach 
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shall not impose unnecessary limitations to the data paths so that, e.g., (AI-)processors can operate 

with multiple in- and outputs or streams returning to the source (machine connector or underlying 

platform) can be realized. 

3.6.2 Transport Component 
At a glance, a Transport Component may appear to be superfluous if we build the platform on the 

capabilities of the AAS approach. We will outline our rationales first and then turn to the design of the 

Transport Component. 

Initial experiments [29] with Docker containers and AAS (using BaSyx version as of July 202044) on 

Raspberry Pi 345 as well as on Phoenix Contact PLCnext edge devices showed that the typical response 

time of operations without computational load is around 23 ms. In contrast, property value accesses 

can be executed at 4-10 ms. For comparison, plain Java Remote Method Invocations operate in this 

setup at 2-4 ms. Further investigations of this discrepancy indicated that utilized components from the 

BaSyx examples represent one operation as three internal REST calls, where two of them are required 

for managing internal functionality. Using lower level BaSyx components, e.g., through the 

InvocablesCreator and ProtocolServiceBuilder discussed in Section 3.5, operation calls can 

be executed at the same response time as property accesses, i.e., around 4-10 ms. This seems to be 

promising for R10 and, in particular, the 8 ms machine pulse mentioned in R28. However, the 

measured times are not suitable for (soft-)realtime processing or software-based stream-processing. 

Consequently, we will use AAS primarily as control interface for the infrastructure layers and the 

platform services (R7). For cross-linking services in terms of data streams we will rely on a dedicated 

streaming approach, as to our very knowledge so far no concepts are provided for streamed data 

among multiple AAS46. In such a streaming setting, the integration of services (potentially implemented 

in different programming languages, R113a) could be done via AAS (not preferable as argued above) 

or through a specific streaming data interface. In the latter case, the service AAS is used to describe 

the streamed data types and the data connectors31 but not for the actual streaming transport. While 

AAS may be preferable for uniformity (R7), specific streaming interfaces will allow for better 

performance (as we will detail in Section 3.6.2.3). 

We structure this section into a brief review of related streaming approaches leading to some 

technology candidates, the design of the component and its (initial) technical validation. 

3.6.2.1 Related Approaches 

We discuss now approaches in the field of stream-processing, their relation to I4.0 and whether they 

could be useful for realizing the IIP-Ecosphere platform. As often certain protocols are required in I4.0 

settings, we further discuss protocol realization candidates.  

Regarding stream processing, we briefly review now related approaches, in particular stream 

processors (with own resource management approach) as well as stream processing libraries (focusing 

more on the stream-based transport). It is important to make this distinction, as the dynamic 

deployment and the adaptation capabilities foreseen for the IIP-Ecosphere platform shall integrate 

with rather than contradict automated management capabilities of the selected stream processing 

approach. From previous experience we know, that modifying a stream processor such as Apache 

Storm to introduce desired adaptation capabilities can be a tedious work that, if not accepted by the 

                                                             
44 At least at that time, there were no version-based releases of BaSyx. 
45 Raspberry Pi is frequently used as IoT mockup device in literature and practice, e.g. for cost-effective 
showcases or even in experimental evaluations. 
46 AAS are designed to describe production assets along their lifetime rather than software components or 
even soft-realtime data services. Thus, this statement shall not be considered as critics rather than a potential 
limitation of AAS that has to be mitigated in IIP-Ecosphere by a different solution or additional technical means. 



 

 
 

IIP-Ecosphere Platform Handbook 

39 

developing company, will not scale/evolve with future developments of the stream processor. Besides 

technical capabilities, important aspects are R13 (utilized transport protocols), R14 (openness and 

flexibility, in particular for connectors, transport protocols and formats) as well as availability and 

licenses (R5) of the individual approaches. 

Table 6: Selected scientific streaming processing approaches (related to IoT) 

Name Mgt. Based on Protocols Edge Availability License Latest 

EdgeWise [10] Yes Apache Storm  Pi3 Yes APL2.0 2016 

Frontier [23] Yes  “WiFi” Pi - ? ? 

[4] Yes Apache NiFi  Pi - ? ? 

Dart [3] Yes  REST, 
JSON 

Pi - ? ? 

PESP [14] Yes RabbitMQ   - ? ? 

VISP [13] Yes Spring cloud 
stack, RabbitMQ 

AMQP, 
MQTT 

 Yes APL2.0 2018 

Esc [28] Yes    - ? ? 
 

Table 6 compares related approaches that can be found in literature on stream processing for edge 

devices or IoT. Three of the approaches were evaluated on Raspberry Pi devices (mocking IoT devices, 

typically in rather different IoT application settings). For two of the approaches the implementation is 

available, and only [13] utilizes IoT protocols (as provided by the underlying technology). All of the 

approaches provide more or less (automated) management/deployment functionality. Although 

potentially interesting in an evaluation context, we see existing management functionality as a 

potential risk as they usually are designed for a certain setting and integrating, interfacing or in the 

extreme case replacing such functionality may lead to unforeseen complications. 

Table 7 summarizes a set of recent stream processing frameworks and libraries that were identified 

through a web search (without specific focus on IoT/edge). Not included are commercial approaches 

like Grovestreams, Hazelcast, or Amazon Kinesis that were also part of the result set as R1, R5 and R6 

in [8] express a clear direction towards Open Source. 

Table 7 consists of two parts, the upper part for IoT related approaches and the lower part for generic 

stream processing approaches. In these approaches, the presence of management functionality 

correlates with the nature of a stream processor rather than a streaming library. Moreover, stream 

processors are usually realized as a complete stack, usually based on a cluster-based installation, e.g. 

with centralized servers such as Apache Zookeeper or a resource manager. Within the IT server 

installation of an IoT platform, such setups may appear to be feasible. However, we expect serious 

limitations for devices close to the production / OT47 side. It is worth mentioning that some sources 

indicate that approaches like Apache Flink try to remove resource consuming central services like 

Apache Zookeeper and even consider the realization of specific versions for edge devices (e.g., a 2021 

release of Flink shall include edge support). From a research perspective, e.g., in [10], such widely used 

stream processors are also criticized for their inflexible adherence to the One-Worker-Per-Operation-

Architecture (OWPOA) as this design loses efficient processing scheduling opportunities by relying on 

the underlying operating system scheduler. A positive trend seems to be that more and more security 

features are built into the frameworks. Examples of such security features and a potential 

methodology to integrate them in a framework—especially from the early phases of framework 

                                                             
47 As discussed in [8], OT refers to Operation Technology, i.e., the control and monitoring of production 
machines, which typically operate under hard-realtime conditions. In contrast, IT (Information Technology) 
such as the IIP-Ecosphere platform typically can only operate under soft-realtime constraints. Nowadays, edge 
devices may bridge OT and IT, e.g., in terms of separated, but integrated hard- and soft-realtime cores, 
potentially controlled by different operating systems/software. 



 

 

40 

IIP-Ecosphere Platform Handbook 

design—is introduced in Section 3.9. This is in contrast to the initial tendency of, e.g. Apache Storm, to 

sacrifice security and encryption for throughput.  Except for approaches dedicated to the IoT domain, 

full-stack frameworks typically realize own (usually fixed) transport protocols and, if at all, realize own 

internal interfacing concepts, e.g., based on REST-APIs. Thus, as far as we can see, (flexible, 

exchangeable) IoT-based transport protocols are rather uncommon and, typically, AAS is not 

considered for interfaces at all.  

Table 7: Selected stream processing frameworks and libraries (*=incubating, vispl = visual programming language) 

Name Mgt. Language Protocols Env License Latest Comment 

Apache 
Edgent 

Yes Java MQTT, … edge APL2.0 2017* Own language 

Apache 
Streampipes 

No Java, 
Typescript 

MQTT, 
OPCUA, 
ROS, … 

IoT APL2.0 2020* ML support, 
Kafka, 
container, vispl 

Benthos No Go AMQP, 
MQTT 

 MIT 2020 Own language 

Eclipse IoT 
Streamsheets 

Yes JavaScript MQTT, 
OPCUA, 
… 

IoT EPL2.0 2020 Spreadsheets, 
Docker 

Eclipse Kura Yes Java MQTT, 
OPC-UA, 
… 

IoT/edge EPL1.0 2020 OSGi, Docker, 
vispl, stack 

EdgeX 
Foundry 

Yes Go, C MQTT, 
OPC-UA, 
… 

IoT/edge APL2.0 2020 REST, Stack 

Flogo Yes Golang  IoT/edge, 
Cluster 

BSD3-
Clause 

2019 TensorFlow, 
zero code 

Sensorbee No Go  IoT MIT 2017 ML integration, 
own language, 
documentation 

Akka Yes Scala, 
Java 

HTTP Cluster APL2.0 2020 Actors 

Apache Apex Yes Java Hadoop 
RPC 

Cluster APL2.0 2018 YARN 

Apache 
Beam 

Yes Java, 
Python, 
Go 

 Flink, etc. 
cluster 

APL2.0 2020 Requires 
processing 
cluster 

Apache Flink Yes Java, 
Scala 

 Cluster APL2.0 2020 Zookeeper, 
edge 2021? 

Apache 
Flume 

Yes Java Avro, 
protobuf 

Cluster APL2.0 2019 Zookeeper, big 
footprint 

Apache 
Gearpump 

Yes Scala 
 

  APL2.0 2019* Storm/Samoa 
compatible, 
YARN 

Apache Kafka Yes Scala, 
Java 

 Cluster APL2.0 2020 Zookeeper 

Apache Kafka 
Streams 

Yes Java  Cluster APL2.0 2020 Requires Kafka 

Apache NiFi Yes Java  Cluster APL2.0 2020 FlowFiles, 
REST, vispl 
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Name Mgt. Language Protocols Env License Latest Comment 

Apache 
Pulsar 

Yes Java  Cluster APL2.0 2020 Brokers,  
Bookkeeper, 
Zookeeper 

Apache 
Samza 

Yes Scala, 
Java 

 Cluster APL2.0 2019 YARN, Kafka 

Apache Spark Yes Scala Spark 
RPC 

Cluster APL2.0 2020 shared 
memory 

Apache 
Storm 

Yes Clojure, 
Java 

 Cluster APL2.0 2020 Zookeeper 

Hortonworks 
Streamline 

No Java, 
JavaScript 

REST  APL2.0 2018 Documentation 

Spring Cloud 
Stream 

(No) Java open*  APL2.0 2019 Depends on 
Spring 

StreamFlow Yes Java  Kafka, 
Storm 
cluster 

APL2.0 2015 Vispl for Kafka, 
Storm 

Streamtz No Python   Continuum 2020 Pandas, cuDF 
 

Some of the approaches (Apache Streampipes, Sensorbee, Streamtz, Flogo) listed in Table 7 provide 

Machine Learning (ML) support/integration while other approaches already realize concepts for the 

integration of programs in multiple languages, e.g., Apache Storm and Apache Spark for Python. 

Approaches like Apache Streampipes, Eclipse Kura, Flogo, Apache NiFi, or Streamflow take up the trend 

towards visual programming, low code or even no code (as also identified for some I4.0 platforms in 

[27]). Although convenient, an integration of configuration modeling with existing visual programming 

languages for the orchestration of services may be a risky approach. 

Summarizing these findings, only few approaches remain as candidates for the realization of streaming 

in the Transport Layer, which may involve edge devices, servers and even clouds. This (as well as license 

and normative considerations) requires a flexible selection of the transport protocol (R14) and the wire 

format. Moreover, the requirement of using AAS wherever possible (R7) or at least to allow for an 

exchange of the communication protocol excludes almost all stream processing frameworks (of course 

not from comparative evaluation settings). Needless to say that a candidate approach shall be able to 

handle synchronous (one input data item is related to one or no output item) and asynchronous (inputs 

and outputs can be decoupled) processing of data items as well as resources local (among local 

processes) and external network communication, e.g., for input and output.  

As a result of these filter criteria, Apache Streampipes, Sensorbee, Hortonworks Streamline or Spring 

Cloud Stream appear to be feasible candidates. However, initial experiments indicated serious 

problems with Sensorbee and Hortonworks Streamline ranging from incomprehensible or non-existing 

documentation to problems when executing the respective examples. Apache Streampipes (APL2.0) 

ships with interesting features, several kinds of generic connectors, exchangeable transport protocol 

and wiring format although it is still considered to be in incubation state. As alternative we see Spring 

Cloud Stream48 (APL 2.0), which allows exchanging the transport protocols for individual in/out-bound 

streams, supports user-defined payload wire formats, flexible exchange of communication protocols, 

network properties per data path among processors, implicit payload conversion (also through our 

serializer mechanism) and dynamic stream re-routing at runtime. Moreover, Spring Cloud Stream was 

successfully applied in [13].  

                                                             
48 https://spring.io/projects/spring-cloud-stream  

https://spring.io/projects/spring-cloud-stream
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Figure 22: Transport Component overview  
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However, it is important that we want to integrate the streaming approach with the connectors and 

the ML processors in a model-based manner similar to our work for Apache Storm in [6], here with an 

even stricter focus on isolating the utilized streaming approach. We believe that relying on glue code 

generation allows us to replace (within limits, e.g., always assuming a data flow graph with some kind 

of source, processor and sink) the stream approach. Thus, we see Spring Cloud Stream as a good and 

justified initial candidate for the reasons stated above as well as because it ships with several transport 

protocols including protocols for public clouds (although it also relies on a large dependency tree 

particularly induced by the Spring Framework49). In later stages of the project, we may take Apache 

Streampipes or an edge-enabled version of Apache Flink into account. 

Regarding IoT protocols, several implementations are available, in particular from different projects of 

the Eclipse.IoT50 ecosystem (provided under compatible licenses for IIP-Ecosphere). While some 

projects focus on specific protocols, e.g., Eclipse Paho51 on MQTT, others already integrate various 

protocols such as Eclipse Hono52. Although such integrations may be an interesting foundation, they 

often rely on specific assumptions, e.g., Eclipse Hono collects binary payload from different protocols 

and forwards the payload to a fixed default protocol (MQTT). While such approaches may provide 

access to different low-level protocols or machine connectors (cf. Section 3.7), they may also introduce 

limitations due to their design choices or do not provide mechanisms for turning such generic 

implementations into application specific solutions, e.g., through application-specific data translators. 

Moreover, some transport protocols are currently not applicable, e.g., we currently do not consider 

OPC UA PubSub due to a lack of feasible implementations, where Eclipse Milo53 currently does not 

support the required OPC UA version. 

3.6.2.2 Design 

Figure 22 depicts an overview of the packages and (top-level) classes in the Transport component. The 

Transport component is intended to be deployable as re-usable component rather than to act as a 

standalone communication container. The main concepts in this layer are: 

• The TransportConnector allowing to bind transport protocols into the infrastructure. A 

transport connector allows sending/receiving of data on (virtual) channels. As receiving usually 

happens in asynchronous manner, implementations that rely on a TransportConnector are 

informed via the ReceptionCallback about received data. 

• The actual wire format to be used for transport may differ from protocol to protocol. For 

example, low level transport protocols such as MQTT or AMQP support arbitrary binary 

payloads (might be with individual size restrictions) while higher level protocols such as OPC 

pub/sub define their own payload format. However, to be open and flexible with respect to 

the wire format and to utilize a minimum of data formats within the platform (R19), we foresee 

a mechanism for data transcoding. For performance reasons, data transcoding shall happen 

only when actually needed. Specifically for binary wire formats, the Serializer transcodes 

programming language objects into a binary representation and back. More generically, a 

Serializer is a TypeTranslator that can be applied also in other situations, e.g., data 

processing. In turn, TypeTranslator is a combination of InputTypeTranslator and 

                                                             
49 Native executables are in experimental development and may help optimizing the deployment/performance: 
https://www.heise.de/news/Java-Framework-Native-Spring-Anwendungen-laufen-ohne-die-JVM-
5078681.html  
50 https://iot.eclipse.org/  
51 https://projects.eclipse.org/projects/iot.paho  
52 https://projects.eclipse.org/projects/iot.hono  
53 https://projects.eclipse.org/projects/iot.milo  

https://www.heise.de/news/Java-Framework-Native-Spring-Anwendungen-laufen-ohne-die-JVM-5078681.html
https://www.heise.de/news/Java-Framework-Native-Spring-Anwendungen-laufen-ohne-die-JVM-5078681.html
https://iot.eclipse.org/
https://projects.eclipse.org/projects/iot.paho
https://projects.eclipse.org/projects/iot.hono
https://projects.eclipse.org/projects/iot.milo
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OutputTypeTranslator with cross-over template bindings54. Intentionally, we leave the 

actual technical approaches for transcoding open here (some candidates are JSON, OPC-JSON 

or protobuf55). The actual instances depend on the data types used in the application and are 

supposed to be generated from the configuration model. While instances of 

TypeTranslator are supposed to be attached where needed (and may be combined with 

Serializer instances), Serializer instances shall be usable dynamically on-demand, e.g., 

for a certain TransportConnector implementation. For this purpose, we provide a 

SerializerRegistry. 

• The TransportConnector instances shall be available to other components of the platform 

where an internal data protocol is needed. To obtain TransportConnector instances, we 

define a TransportFactory and exhibit the actual protocol, the wire format and the broker 

data connector(s) from the platform configuration in the Transport AAS. 

• Three default protocol plugins are shipped with the IIP-Ecosphere platform, namely MQTT v3 

(based on Eclipse Paho), MQTT v5 (also Eclipse Paho) as well as AMQP (based on the RabbitMQ 

AMQP client). Each protocol plugin is an own alternative component, the installed ones 

determine the TransportFactory behavior through a JLS descriptor.  

• The streaming approach is already relevant to the Transport Layer as transport protocols and 

wire formats must be provided accordingly. However, as discussed above, the streaming 

approach shall also remain exchangeable through glue code generation. Thus, the platform 

provides also transport plugins for the default streaming approach (Spring Cloud Stream), the 

so called Binders, which are realized in turn through the Transport Component. A basic 

spring component implements convenient mechanisms for applying Spring Cloud Stream in 

IIP-Ecosphere, e.g., to add serializers to the SerializerFactory through the component 

setup (in Spring application.yml, to be instantiated from the platform configuration) or to 

bind the SeralizerFactory to the data conversion mechanism of Spring Cloud Stream 

(SerializerMessageConverter). In addition, Spring Cloud Stream ships with generic 

serialization approaches, e.g., for JSON or XML that may be used out-of-the-box. By default, 

the IIP-Ecosphere platform ships with five alternative Spring Cloud Stream protocol binders for 

MQTT v3 (based on Eclipse Paho and HiveMQ-client), MQTT v5 (based on Eclipse Paho and 

HiveMQ-client) and AMQP (based on the RabbitMQ AMQP client). Alternative binders for the 

same protocol are mainly provided for performance comparison. 

It is important to mention that further protocol binders are available for Spring Cloud Stream, e.g., for 

RabbitMq, Amazon Kinesis, Google PubSub, Solace PubSub, Azure Events Hub, Apache RocketMQ. 

These binders may be helpful for realizing Cloud integrations, e.g., in the Security and Data Protection 

Layer. However, for uniform usage of protocols within the platform, a respective 

TransportConnector shall be provided (the AMQP connector may already be used for RabbitMq). 

Furthermore, it is important to mention that we do not prescribe the amount or deployment strategy 

for communication servers (Brokers for the mentioned concrete protocols) within a platform 

installation. The platform configuration shall provide opportunities to define multiple brokers (to be 

reflected in the Transport AAS) while the broker(s) to be used shall be instantiated through the 

platform configuration or the network managers into the respective deployment units. Moreover, 

based on the provided mechanisms of the protocol implementations and the streaming library, 

                                                             
54 At a glance, TypeTranslator shall be sufficient, but in some situations it is convenient that only the 
required direction must be implemented rather than both. This is in particular true for the machine/platform 
connectors, which require either direction for different types but usually not both directions. As 
TypeTranslator inherits from the input/output type translators, it is also possible to use a fully-fledged 
TypeTranslator in these situations. 
55 https://developers.google.com/protocol-buffers  

https://developers.google.com/protocol-buffers
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different levels of resilience or recovery can be realized, while failover to alternative broker servers 

may require additional implementation work. 

3.6.2.3 Validation and Evaluation 

We discuss now briefly the validation of the design and the implementation of the Transport 

Component as it has a major impact on the performance of the entire platform. We start off with a 

discussion of the regression testing approach and turn then to an initial performance evaluation.  

The implementation of the Transport Component is subject to regression testing and continuous 

integration. Testing protocol integrations requires some form of server or broker instance. Therefore, 

further Open Source components are utilized so that the tests are self-contained, e.g., embeddable 

protocol brokers to simulate the platform side in the respective tests. The required dependencies are 

only active in testing, i.e., they are not part of a platform installation and, thus, here relaxed license or 

Java version rules may apply if needed. In the regression tests, we use protobuf and a simple JSON 

implementation for serialization as well as Apache HiveMq or Moquette as MQTT broker and the 

Apache Qpid broker as AMQP broker.  

For the Spring Cloud Stream binders we realized a simple setup validating the envisioned streaming 

capabilities mentioned in Section 3.6.2.1. This is reflected in the communication setup shown in Figure 

23. Ingested by a Source (the regression test), a mocked stream component (Transformer) modifies 

the data (synchronously) and passes the data to the broker (representing the IIP-Ecosphere 

platform/server). The communication between these instances is handled by the Protocol Binder 

under test as well as the Serializer selected by the test. The Protocol Binder is based on the 

respective protocol implementation and in the test bound against a corresponding embedded test 

server/broker. To test also the flow back, a shortcut client based on a corresponding 

TransportConnector receives the data and ingests modified data asynchronously, which now flows 

through the Broker, the Serializer and the Protocol Binder back to the Source acting also as 

Receiver. Combining Source and Receiver is a relevant setup, as a machine/platform connector 

(to be discussed in Section 3.6.3) also ingests data and may receive information, e.g., to reconfigure an 

edge device or a machine. The regression test has access to the sent/received information and, thus, 

can validate the entire flow. 

 

 

Figure 23: Regression testing data flow for the Transport Component. 

In addition, it is also important to understand the (early) fulfillment of quality requirements. We 

determine the respective properties in terms of a performance experiment. Figure 24 details the setup 

of this experiment, which in fact is a variant of the regression test setup. Here, the Source produces 

a stream of data items at a certain ingestion frequency. Each data item consists of at least 50 values 

with repeatable characteristics (R19a). We concentrate on the payload and scope out meta-

information (R79) for now. A simple Anonymizer takes a produced data item and turns one property 

(a name String) into simple pseudonyms. An “AI-Service“ inspects the data and sends for 5 received 

data items one “command” back to the Source. Again, on the forward flow, the processors operate 

synchronously, while the backward “command” flow is ingested asynchronously. The number of 

received data items is recorded in all processors by simple monitoring probes and written in parallel 

once per second to a log file. An additional stream is used to asynchronously send experiment control 
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commands to all involved processors, e.g., to terminate the experiment and to close the monitoring 

log. Items on the experiment control stream are not recorded by the probes. 

The processors in Figure 24 can be executed locally (in one process, in multiple processes) or 

distributed on separated hosts as indicated in Figure 24. For the distributed execution, two brokers are 

used, one in the local realm and a remote broker in the platform realm. In the local realm, we currently 

use the same transport protocol/mechanism as in the platform realm, i.e., we focus at the moment on 

an Inter-Process Communication (IPC) setup rather than an edge setup where at least one stream goes 

to a different resource or the platform. Replacing the transport protocol, using different brokers or 

exchanging the wire format for serialization may be subject to future experiments. In this experiment 

we focus on the basic transport characteristics of the utilized approach. 

 

   

Figure 24: Performance testing data flow for the Transport Component. 

For executing the experiment, we use a selection of the binders available in the platform (HiveMq v3, 

v5 with QoS AT_LEAST_ONCE, AMQP) with the setup as shown in Figure 24 and a respective (local, 

embedded) broker (Apache HiveMQ 2020.4, Apache Qpid 8.0.2). As baseline, we realized a plain 

network communication binder/distributed broker based on Netty56, an asynchronous networking 

library, and the network port management of the platform. For the source, we use a message ingestion 

rate57 per experiment and vary it from slow pace (R28) up to congestion. As wire format, we use a 

simple JSON serialization (leading to 650 Bytes of payload). We run the experiment for 1 minute and 

exclude by default the first three seconds as well as the last second where fluctuations due to network, 

just-in-time compilation and broker startup activities may occur. Further, some time may elapse until 

the average throughput is established, which we consider in this experiment as part of the stable 

measurements although it may significantly cause variations.  

The measurements for this initial experiment have been taken on an Intel Core 7-8750U @ 1.90GHz 

with 32 Gbyte running Windows 10 and OpenJDK 13+33. As we aim at the moment for initial measures, 

we do not pay specific attention to a clean setup, e.g., getting rid of potentially other process influences 

such as a virus scanner or system updates.  

                                                             
56 https://netty.io/  
57 The ingestion is based on the Spring Default Poller, which is controlled by a fixed delay between message 
ingestion time slots (translates to a minimum ingestion rate) and a maximum number of messages ingested 
within a slot (determines a maximum ingestion rate). The effective ingestion rate is within the minimum and 
maximum ingestion, but subject to an internal congestion control of Spring Cloud Stream. 
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Figure 25: Average stream throughput measures for the four utilized alternative binders with trendlines. 

Figure 25 illustrates the average ingestion rate at the source on the horizontal axis and the average 

arrival rate at the sink on the vertical axis. Until an ingestion rate of around 1000 messages per second, 

all binders scale similarly. Over 1000 messages per second, the behavior of the four binders differ 

significantly. The arrival rate of the MQTT v3 binder starts dissociating from the ingestion rate at 

around 1500 messages per second. For MQTT v5 this happens at around 2100 messages per second 

and for AMQP at a rate of roughly 2300 messages per second. While the MQTT v3 binder tries to cope 

with the ingestion rate until 6500 messages per second (dropping at the sink to 1400 messages per 

second), the MQTT v3 and the AMQP binders stop operating around 2700 messages per second. In 

contrast, the experimental Netty binder scales well until 7200 messages per second. Then the sink 

rate starts dissociating from the ingestion rate and above 9300 messages per second the simple 

experimental broker implementation stops operating as indicated by the trendline in Figure 25. 

Moreover, there are noticeable differences in settling time for the average throughput (not shown in 

Figure 25): All binders require more than 10 seconds to reach the respective average throughput, while 

Netty requires higher settling times for lower ingestion rates and AMQP leads faster to a stable 

throughput than both MQTT versions. 

As Figure 25 relates source and sink throughput rates, it does not reflect the total number of translated 

messages. Due to the streaming setup, the messages among source, processors and sink and also 

messages on the “command” channel (one item per five input messages) are communicated. Thus, the 

absolute number of transmitted messages per second is higher (least around factor 3.2). Table 8 details 

these numbers for the measured protocol-client-server combinations. In particular, our HiveMq 

readings amount to similar ranges as reported in [20], where two server machines with up to 16 CPU 

cores but no stream processing approach were used. 

Table 8: Total number of translated messages per second in best source/sink transmission situation. 

Total number of translated messages per second  

MQTT v3: HiveMq, HiveMq embedded server 6172 

MQTT v5: HiveMq, HiveMq embedded server 8908 

AMQP: Rabbit MQ client, Qpid embedded server 9531 

NETTY 30298 
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In summary, the required rate of 125 messages at 8 ms machine pace (R28) is supported by all brokers 

and works in combination with the Spring Cloud streaming approach. At around 50 values per message 

(650 Bytes of payload in a JSON serialization), a stable ingestion of 1000 messages per second leads to 

(calculated) 2.1 GByte of data transmission per hour. Moreover, the Netty binder can cope with 

(calculated) 15.6 GByte of data, which even qualifies for R9158. It is important to emphasize that we 

focus here on pure IPC transport characteristics without significant data processing load. Moreover, 

we use a single stream, i.e., multiple (moderate) input streams from different edge devices may easily 

aggregate to even higher frequencies and volumes. In a realistic setting, we expect a multi-server setup 

as platform installation and potentially also a redundant cluster-based message handling for individual 

tasks, e.g., in the data integration, so that the envisioned approach qualifies for the given data 

(transport) quality requirements, in particular frequency and volume. 

Further experiments indicate that the discussed behavior is similar when running the data processing 

within a single JVM, i.e., as threads, or in separate processes. Measurements on real edge devices with 

inter-device (cross-realm) network communications are subject to future work. As soon as further 

parts of the platform are available that potentially impact the data size or the performance (meta-

information, security, etc.), further experiments shall be performed. 

3.6.3 Connectors Component 
The Connectors Component is responsible for the communication with already installed platforms (the 

virtual platform aspect) or machines (potentially connected via some form of edge devices). The aim 

here is to allow for a bi-directional, typed communication represented in terms of connector instances. 

Relying on the design of the Transport Component, it is desirable that the machine/platform 

connectors utilize type translators or serializers for the inbound communication, i.e., to translate 

received information (if feasible already filtered in application-specific manner) into application-

specific datatypes that can further be processed in the IIP-Ecosphere platform. For the outbound 

direction, (AI-)services or humans may make decisions about changes in the connected 

machines/platforms. These decisions are represented as information, e.g., commands, and are 

translated/sent through the connector to the machine or platform. Here, type translators shall turn 

the application-specific data types received from the platform side into information suitable for the 

external side. As stated in Section 3.6.2, application-specific type translators shall be realized by code 

generation to ease the development of applications. 

The connectors discussed in this section may be utilized within the realm of the same factory, i.e., they 

may run at reduced or even no security measures. The connectors may also link to external realms, 

e.g., via the internet. In this case, adequate encryption mechanisms may apply or even the 

machine/platform connectors may have to be extended through IDS functionality. 

3.6.3.1 Related approaches 

Regarding IoT protocols, several implementations are available, in particular from various projects of 

the Eclipse.IoT ecosystem. Some projects focus on specific protocols, e.g., among others Eclipse Paho 

on MQTT, Eclipse Milo on OPC UA, Eclipse Californium59 on CoAP, Eclipse Leshan60 on LWM2M, or 

Eclipse Tahu61 on legacy SCADA/DCS/ICS protocols. Other projects already integrate various protocols 

such as Eclipse Hono, Eclipse Agail62, Eclipse Kapua63 with a cloud focus based on MQTT transport or 

                                                             
58 Based on the transferred messages in Table 8, this leads to 13.5 GBytes up to 66 GBytes per hour. 
59 https://projects.eclipse.org/projects/iot.californium  
60 https://projects.eclipse.org/projects/iot.leshan  
61 https://projects.eclipse.org/projects/iot.tahu  
62 https://projects.eclipse.org/projects/iot.agail  
63 https://www.eclipse.org/kapua/  

https://projects.eclipse.org/projects/iot.californium
https://projects.eclipse.org/projects/iot.leshan
https://projects.eclipse.org/projects/iot.tahu
https://projects.eclipse.org/projects/iot.agail
https://www.eclipse.org/kapua/


 

 
 

IIP-Ecosphere Platform Handbook 

49 

Eclipse Ponte64 for mapping IoT protocols into REST. Although such integrations may be an interesting 

basis for our work, they already realize concepts and ideas that do not fully comply with the 

requirements of the IIP-Ecosphere platform. For example, Eclipse Hono collects binary payload from 

different protocols and forwards the payload to a default protocol (MQTT) without options for 

filtering/translating the payload or for supporting alternative protocols. Similarly, Eclipse Ponte 

focuses on REST for internal communication, which from our point of view is just one potential 

alternative. Further, Eclipse Agail emphasizes the cloud aspect but neglects local resources or edge 

devices. While these and similar approaches may ease the access to different low-level protocols or 

machine connectors (cf. Section 3.7), they usually do not provide mechanisms to enable core IIP-

Ecosphere functionalities such as data filtering or translation. Moreover, if they implement a stack or 

multiple integrated layers, they usually do not offer AAS functionality (R7). 

While it makes sense to review these approaches to find a feasible abstraction as well as to consider 

existing abstractions and protocol implementations as those mentioned above, it is not productive just 

to implement connectors to achieve a high number of protocols (this is one of the strengths of existing 

I4.0 platforms as shown in [27]). It is more important to develop and evaluate concepts to enable 

openness and extensibility for inbound/outbound directions. From a resource perspective, it is 

important to realize connector types for the actual needs of the stakeholders (R14a states MQTT and 

OPC UA). Moreover, one goal is to demonstrate how model-based generation can turn such generic 

connectors into efficient and application-specific mechanisms already at the bottommost layer of a 

platform.  

3.6.3.2 Design 

For the design of this component, it is important to recall that in contrast to the Transport Component, 

the Connectors Component already deals with processing and translating application-specific data. For 

example, it is not performant to just ingest, e.g., an entire OPC UA namespace upon each data 

modification or, if polling/sampling shall be applied, in each poll cycle. It is more important to select 

the required data in an application-specific manner and to focus on the information that is required by 

an application running on the platform. We call the step of translating an outbound protocol into an 

internal protocol (and back) “protocol adaptation”, i.e., a (generated) plug-in ProtocolAdapter will 

be responsible for this task. One form of implementing the protocol adaptation is in terms of existing 

TypeTranslator and Serializer instances from the Transport Component, either as the 

realizations are part of the platform and can be re-used or because they are defined as part of the  

application and can be generated or are provided as hand-crafted components. However, also other 

forms of type translation may occur. This applies to connectors that handle generic payload (where 

the payload format must be translated to application-specific instances and can optionally be 

filtered/translated). Further, it applies to connectors that are based on a specific information model, 

such as OPC UA or AAS. In the latter case, we aim for specific TypeTranslator instances that are 

linked to a generic model interface abstracting over the underlying information model. However, not 

all approaches support the same range of concepts and types, e.g., OPC UA allows different kinds of 

custom datatypes while AAS does not. Thus, connectors will differ in the offered functionality of such 

an interface and it may be helpful to provide meta-information stating the connector capabilities in 

order to dynamically guideline the code generation for a certain connector. 

                                                             
64 https://projects.eclipse.org/projects/iot.ponte  

https://projects.eclipse.org/projects/iot.ponte
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Figure 26: Event-based connector and push-based protocol-adaptation. 

Moreover, connectors may differ in their data provisioning style. For performance reasons it is 

desirable to utilize event-based ingestion, i.e., the underlying protocol or information model informs 

the connector about new or changed data. Message passing approaches like MQTT or information-

model based approaches like OPC UA provide such events. In this case, as illustrated in Figure 26, the 

“Protocol” notifies the Connector about new data. In turn, the Connector consults the 

ProtocolAdapter to translate the external data into an application-specific type, which, dependent 

on the “Protocol” capabilities, can be done in terms of payload translation or by querying the 

abstracted model of the “Protocol” (not shown in Figure 26). When the data is translated, the 

respective instance is passed on to a registered streaming Source in asynchronous manner. For the 

outbound direction (not shown in Figure 26), the Source ultimately receives the data as a stream and 

calls the Connector upon a received data item, which then consults the ProtocolAdapter in the 

backward direction ultimately leading to a send/write command on Protocol. 

Protocol implementations not offering such notifications are subject to polling. One example here is 

the current BaSyx implementation of AAS. In the version that we currently use, no events are provided 

(BaSyx plans for events earliest end of 202065). As illustrated in Figure 27, the IIP-Ecosphere 

Connector then actively (based on connector settings) polls information from the “Protocol”. As 

before, the Connector consults the ProtocolAdapter and notifies the registered Source about 

the data to be ingested. The outbound direction works as discussed for event-based ingestion. 

 

Figure 27: Poll-based connector and subsequent protocol adaptation. 

                                                             
65 If the required notifications are available, the AAS machine/platform connector can be extended to support 
event-based ingestion. 
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Realizing the polling cycle in the Connector rather than the Source allows for connector-specific 

polling strategies as well as for a uniform interface towards the stream-based data processing in the 

IIP-Ecosphere platform.  

While event-based injection and polling may appear to be an alternative choice, a Connector may, if 

feasible, implement both alternatives and let the user (via the setup/platform configuration) decide 

about the desired approach. In particular, connectors for protocols based on information models may 

support both forms (such as OPC UA).  

Figure 28 presents an overview of the main classes in the Connectors Component of the IIP-

Ecosphere platform. The component consists of: 

• The Connector interface in the middle of the figure representing a platform/machine 

connector. Connectors based on an information model shall exhibit a ModelAccess instance 

to interact with the information model. The Connector interface defines four template 

parameters, consisting of the data types accessible from the platform, i.e., CI for input into 

the connector and CO for output produced by the connector, and the data types for the 

handshake with the underlying protocol implementation, i.e., I for input into the protocol and 

O for output issued by the protocol. A Connector can be connected as specified in the 

ConnectorParameters and security settings like IdentityToken or certificates. When 

connected, received data of type O is passed through a ProtocolAdapter and an interested 

party is informed through a ReceptionCallback (from the Transport Component) in terms 

of a data object of type CO. Via the write method, data of type CI can be passed in, is 

translated by the ProtocolAdapter and handed as an instance of I to the underlying 

protocol. Finally, a Connector can be disconnected or, ultimately, disposed. So far, we 

plan for a single distinct pair of input/output types. If heterogeneous types shall be covered, 

we see two alternatives: 1) Mapping the alternative types as alternatives into an umbrella 

type. 2) Using a discriminator in terms of the AdapterSelector. 
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Figure 28: Overview of the Connectors Component. 
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• The TranslatingProtocolAdapter is a default implementation of the 

ProtocolAdapter and relies on type translators, i.e. InputTypeTranslator and 

OutputTypeTranslator defined by the Transport Component. The ProtocolAdapter 

and its related classes will be detailed below. In particular protocol adapters to information 

models have a relation to a ModelAccess instance, which allows the type translation to 

interact with the model. 

• The AbstractConnector provides a basic implementation, e.g., for handling the 

ReceptionCallback, for utilizing the ProtocolAdapter, etc. leaving just methods open 

that are protocol specific. The AbstractChannelConnector specializes the 

AbstractConnector for channel-based protocols such as MQTT and, in turn, requires a 

specialized protocol adapter (as we will detail below). 

• The ConnectorExtension may add additional capabilities to a connector, e.g., IDS support.  

The IDS reference architecture model introduces the concept of Trusted Connector. Such a 

connector extends the security features of Base Connector. An IDS connector generally focuses 

on security and delivers a trusted platform, incorporating several mechanisms such as identity 

and trust management for authentication, trustworthy communication based on encrypted 

connections. Instances of trusted connector allow the remote integrity verification to ensure 

the integrity of the deployed software before granting corresponding access to data. Such 

connectors guarantee a controlled execution environment for data services [16]. 

• The ConnectorRegistry collects information about installed and used connectors. Installed 

connectors are registered through an instance of ConnectorDescriptor upon 

infrastructure startup (in Java through JSL) with the ConnectorRegistry.  

• The information provided by the ConnectorRegistry is also the basic information to be 

presented in the AAS of the Connectors Component. Further, selected capabilities of the 

connectors are made available through the installedConnectors sub-model of the 

platform AAS. Created connector instances register themselves upon connect/disconnect with 

the ConnectorRegistry, which in turn leads to an update of the activeConnectors sub-

model, i.e., connected connectors appear as sub-model elements and disconnected 

connectors are flagged as inactive66. Further, connector instances provide access to their 

input/output data types by referencing to the respected sub-model elements in the Types 

sub-model (see Section 3.5). Ultimately, connector instances link to their descriptors in the 

installedConnectors sub-model to indicate their origin and capabilities. 

Currently, four specific (optional) connectors are realized in terms of individual components extending 

the Connectors Component. These are the generic AasConnector for integrating external AAS into 

the platform (based on the AasFactory from the Support Layer67), the OpcUaConnector for OPC 

UA 1.04 (based on Eclipse Milo) as well as two payload-based MQTT connectors, one for MQTT v3 and 

one for MQTT v5, also based on Eclipse Paho akin to the Transport Component. Each of these protocols 

bind the known template parameters of Connector as needed, all leaving CI and CO unbound as 

these are application-specific types to be defined when instantiating the respective connector (and 

providing a matching ProtocolAdapter). These approaches/protocols have been selected due to 

the required mandatory support for BaSyx (R7) as well as R14a explicitly mentioning OPC UA and 

MQTT. All connectors are based on TCP/IP networking (R14b). However, R14b does not clarify the 

protocol and the wire format, but some TPC/IP based protocol can be realized using the structures 

                                                             
66 So far it seems that no elements can be removed at runtime from an AAS, potentially to not render 
references among them illegal. 
67 While BaSyx is the default implementation for IIP-Ecosphere, this connector provides the possibility to define 
the individual instance to be used, i.e., individual instances for specific connections may use other factory 
instances than the default one. 
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defined in the Transport and the Connectors Component. Similarly, Bluetooth LE was mentioned in 

R14c without further details. As the Connectors Component is designed to be open, further connectors 

can be added easily. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 29: Model Access and Protocol Adapter in the Connectors Component. 
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We will now detail the ModelAccess and the ProtocolAdapter approach illustrated in Figure 29. 

Some approaches like OPC UA or Asset Administration Shells (AAS) are based on an information model, 

OPC UA even with user-defined custom types. Accessing this model in a uniform manner is a key 

requirement for simplifying the generation of application-specific code for the connectors. This is 

specified by the ModelAccess interface, which allows to read/write properties (based on a 

hierarchical naming scheme to be interpreted in the context of the underlying protocol), to call 

operations, and to register (the implementation counterpart of) custom types. The specific 

ModelAccess instance of a Connector can perform instance translations between value instances 

of the model and the actually used internal type in the platform/application datatypes. ModelAccess 

provides also opportunities to establish monitors on the underlying information model of the protocol, 

i.e., to be notified on specific changes, as well as to register programming language counterparts of 

custom types defined in the model.  

While all methods can be implemented for OPC UA, not all methods are currently meaningful for AAS 

or at least the version of BaSyx that we are using, i.e., some capabilities may not be supported which 

can be indicated in the meta-data of a Connector. The use of the abstracted model access is 

supported by AbstractModelAccess providing a common basic implementation. For payload-based 

protocols such as MQTT, implementing the ModelAccess interface is not required. 

As illustrated on the left side of Figure 29, several further interfaces and classes are defined to support 

the type translation. These classes shall provide flexible support for applying the type translation 

mechanism and even to utilize existing serializers if applicable. If required, a Connector may be also 

implemented from scratch, i.e., without a ProtocolAdapter or using a ProtocolAdapter that is 

not based on TypeTranslator from the Transport Component. The AbstractProtocolAdapter 

is a default implementation providing access to the ModelAccess instance of the connector. The 

TranslatingProtocolAdapter is a refined default implementation of ProtocolAdapter using 

two type translators, one for the translation of information provided by the protocol, i.e., types O to 

CO, and one for the translation in counter direction, i.e., types CI to I.  

As discussed above, the role of the ProtocolAdapter and the involved type translators changes 

when the underlying protocol is based on an information model rather than on payload transport. For 

payload transport, the target communication channels are needed, which are introduced by the 

ChannelProtocolAdapter and its default implementation 

ChannelTranslatingProtocolAdapter, an extension of the TranslatingProtocolAdapter. 

In contrast, for an information model-based protocol, also the ModelAccess instance must be made 

available to the type translators as well as further initialization work such as defining the polling mode 

must be performed. This is introduced by the two refining type translator interfaces, namely 

ConnectorInputTypeTranslator and ConnectorOutputTypeTranslator, both with a 

corresponding basic implementation.  

One last aspect is covered by the types package on the left side of Figure 29. The direction of type 

translation of Serializer in the Transport Component is opposite to the direction for a 

ProtocolAdapter in the Connectors Component, i.e., Serializer instances do not fit directly into 

these. In some cases it would be convenient to use already defined Serializer instances. To 

facilitate this reuse, we introduce the ConnectorInputTypeAdapter and the 

ConnectorOutputTypeAdapter, which both take a Serializer as input and make it usable in the 

context of a Connector. 

3.6.3.3 Validation 

The functional validation of the Connectors Component and the specific connectors realized as 

extensions happens through regression tests. Therefore, we follow the same basic idea as explained 

for the Transport Component in Section 3.6.2.3, i.e., we set up a corresponding protocol server/broker 
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and cause an information shortcut between server side and test code. The test code produces protocol 

output data (of type O) either by modifying the underlying information model (event-based ingestion, 

polling) or by sending respective payload. The connector under test translates the data and issues an 

instance of type CO to a ReceptionCallback in the test code, which turns the information into an 

instance of CI and writes it back into the connector. The respective information must occur on the 

protocol side and can be analyzed and asserted by the test code. Also these regression tests are subject 

to Continuous Integration. 

So far, no performance analysis with the connectors has been performed. This will happen after 

exercising some domain use cases that connect edge devices, brokers or other components. These 

combined conceptual and implementation tests are planned as next steps after this release, i.e., for 

summer/fall 2021. 

3.6.4 Requirements Discussion 
Finally, we review in this section the realization of the most relevant requirements for the Transport 

and Connection Layer. The results are summarized in Table 9. 

Table 9: Review of realized68 requirements for the Transport Layer (based on Table 2, Table 3 and Table 5). 

Requirement Summary 

R1 Support for protocol/streaming extensions of different vendors based on 
different technologies. 

R2 Used standards: MQTT, AMQP, OPC-UA, AAS 

R3 Virtual platform: Container integration possible, communication with underlying 
platforms possible but not responsibility of this layer 

R4 Design based on components and services 

R5 Eclipse Paho, Rabbit MQ, Eclipse Milo, Eclipse BaSyx, Spring Cloud Stream, more 
for testing 

R6 Open for optional/commercial components (transport connectors, serializers, 
machine/platform connectors, protocol adapters, etc.) 

R7 Basic information on transport as well as available/active machine/platform 
connectors is provided. More information regarding supported protocols or 
broker may follow. 

R8 On component/extension level: Alternative TransportConnector and Spring 
Cloud Stream binder components without cross-dependencies among the 
protocols (except for re-use in testing). Optional platform/machine connectors 
without cross-dependencies among the protocols (except for re-use in testing). 

R9 Level 1: By auto-reconnect mechanisms of the protocol implementations and of 
the streaming library 
Level 2: By monitoring the service execution and restarting services if needed 
(see ECS runtime in Section 3.8.1) 
Level 3: By explicit fallback, i.e., hot-standby replication of services, multiple 
connected broker installations and dynamic stream rerouting. Level 3 is 
supported by the selected streaming library, but not realized in this release. 

R10 Soft real-time processing (<100 ms) for production-critical functions feasible (see 
Sections 3.6.2.3 and 3.6.3.3, excluding services on this level) 

R11 Documentation (also in terms of this section), extensive code documentation 
with JavaDoc, generation subject to Continuous Integration and Maven 
deployment 

                                                             
68 In the requirements review tables, „realized” refers to implemented in terms of functionality, committed into 
the IIP-Ecosphere Github repository, tested and integrated with the platform functionality. Text in italics refers 
to missing functionality, i.e., entries that are partially formatted in italicts typically indicate partial realization. 
Work in progress or incomplete/non-integrated realization may be excluded from platform releases. 
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Requirement Summary 

R12 Not implemented in this release. 

R13 Connectivity to other actors via standardized and open protocol integration 

R13a I4.0 devices: Via standardized/open protocol integration and flexible wire 
formats. 

R13b I4.0 platforms: Via standardized/open protocol integration and flexible wire 
formats. 

R13c Other IIP-Ecosphere platform instances: Supported via implemented AAS 
connector, optionally using IDS functionality. Supported by standardized 
transport protocols and flexible wire formats. 

R14 Open and flexible connector integration and default connectors for platform 
internal messaging and stream transport. 

R14a MQTT is supported. OPC UA PubSub is currently not feasible on this layer due to 
missing implementations. Services and Connectors Layer (cf. Section 3.7) will 
take OPC UA into account. 

R14b TCP/IP support by all implemented connectors. Further, plain TCP/IP protocols 
with flexible wire formats possible through extensibility of discussed 
components. 

R14c Future: Bluetooth LE may be supported through additional connectors if required. 

R14d Connectivity at runtime possible through connector selection/instantiation at 
runtime. 

R15 Uniform connectors through two main interfaces as well as type transformation / 
serialization interfaces. 

R16 Open and flexible connector integration shown for five protocols. Extension by 
further protocols from partners and externals possible, supported through Open 
Source development Github. 

R17 Distribution of connectors to devices by considering the Transport Layer as re-
usable, deployable component only with dependencies to selected protocol 
implementations. 

R17b Management of connectors by platform through design management classes, 
exhibited by respective AAS (R7) 

R17c Parameterizable connectors through parameter objects and connector plugins 
such as the ProtocolAdapter. 

R18 Connectors with specific security mechanisms are not part of this release. 

R19 Minimal number of internal wire formats through common type-safe data 
serialization while enabling application-specific data types. Feasible wire formats 
can be selected through serialization implementation/generation.  

R19a Example input formats (southbound), covered by application-specific types and 
generic serialization. 50 values per data item feasible see Sections 3.6.2.3 and 
3.6.3.3. 

R19b Example input formats (northbound), covered by application-specific types and 
generic serialization. 

R19c Restful APIs with JSON/XML through AAS implementation and wire format as 
argued in this section. 

R19d Example output formats (northbound), covered by generic serialization 

R19e Output data clocked in 5 s intervals possible (see Sections 3.6.2.3 and 3.6.3.3, 
excluding services on this level) 

R19f Via the TypeTranslator, configuration and code generation 

R19g Not part of this layer, supported at least through TypeTranslator, 
configuration and code generation 

R20 Supported by streaming library, to be realized by glue code generation (through 
the configuration model).  
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Requirement Summary 

R21 Low impact on data throughput (see Sections 3.6.2.3 and 3.6.3.3, for existing 
connectors, excluding services on this level) 

R22 Platform data throughput of 500 GBytes per year (see Sections 3.6.2.3 and 
3.6.3.3) 

R28 Machine pulse of 8 ms feasible (see Sections 3.6.2.3 and 3.6.3.3) 

R35 OT sampling frequency of 2 ms does not apply to the IT side. 

R38-R68 Several security and privacy mechanisms that are introduced in Figure 17 are 
used to ensure introduced security and privacy mechanism. These mechanisms 
can be added to different layers, phases, and abstraction levels of design. Security 
mechanisms are indicated in the architecture but not part of the implementation 
of this platform release. 

R91 7 GByte per hour not validated on this level (see Sections 3.6.2.3 and 3.6.3.3, 
excluding services on this level) 

 

We conclude, that most of the basic requirements for this layer are already implemented. Advanced 

functionality as well as security and data protection mechanisms (although prepared through 

respective abstractions) are subject to one of the next releases. 

3.7 Services Layer 
The Services Layer introduces the basis for deployable services, i.e., their interfaces, data flows, 

monitoring support, management and AAS representation.  We separate this layer into two major 

components, one component to control/manage service instances and a second providing a unified 

execution environment for services. We start with a discussion of the terminology and background in 

Section 3.7.1 and detail then the requirements for this layer (Section 3.7.2). In two further sub-

sections, we turn then to the two major components of this layer. 

The service management component is generic and can be realized in the same way for all services. 

Due to the overall vision of IIP-Ecosphere to support easy-to use AI methods in intelligent production, 

AI functionalities shall be realized in terms of services (“AI services”, named as AI toolkit in [8]). 

Nowadays, AI is typically realized using various programming languages, in particular Python (R113 

names Python and Java). We support this in terms of a language-specific execution environment 

supporting a unified integration and easing the development of services for the IIP-Ecosphere 

platform. In Section 3.7.3, we discuss the Service Execution Environment for Java and Python. 

The Control and Management component (Section 3.7.4) is closely related to ECS runtime and acts as 

control interface for the platform to take command over services running on certain devices. Control 

operations are, e.g., starting, stopping, reconfiguring or updating services. These operations are 

offered through an AAS, which also provides access to runtime monitoring information for individual 

services. Specific operations involve multiple services, such as switching among equivalent services or 

migrating services among resources, where the control and management component is responsible 

for the orchestration of such operations. 

While we briefly discuss the validation of the individual components at the end of the respective 

section, we review the requirements for this layer in Section 3.7.5.  

3.7.1 Terminology and Background 
In this section, we briefly introduce our notion of the term service and discuss the bigger picture, where 

service implementations are supposed to originate from. 

Several notions for services are used, ranging from web services to microservices. In the IIP-Ecosphere 

platform, a service is (a thread in) a process implemented in any programming language. A service 
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receives data and produces data. Input and out data types are defined and their correct composition 

shall be controlled through the configuration model and the subsequent code generation (cf. Section 

6). Data handling can happen synchronously, i.e., an input item is turned directly into zero or multiple 

output items, or asynchronously, i.e., the service receives data and produces data at any time later if 

at all. A service indicates its state (R4c), meta-information (R4b), name, identification, version, 

kind/category as well as the typed input- and output connectors (R4a). Moreover, it allows for certain 

runtime operations such as passivation, migration, runtime switch to an equivalent service, 

reconfiguration or (re-)activation. Services are typically connected to other services of different kind, 

ranging from source over transformation to sink services. A specific service kind is the probe service, 

with inspects data for monitoring, but passes the data through (typically) without modification. 

Instantiated connections between services are called data paths/relations [30] and shall be defined as 

part of the applications in the platform configuration. 

Further, it is important to answer the question “Where do services come from?”. Details of the 

mechanisms are introduced later, in particular in Section 3.11 and Section 6. Services are specified in 

the platform configuration, in particular through their meta-information and the input/output 

datatypes. Also the relations among the services in terms of application-specific service meshes are 

defined in the platform configuration. The code generation turns this information into service 

interfaces, data classes and data serializers. Further, it binds the service interfaces into service/glue 

code for the selected streaming engine. Along with that, also stub implementations of the service 

interfaces are generated that “implement” a non-Java service on the Java side and transparently send 

data through IPC/a network protocol to the non-Java service implementation and ingest returned data 

back into the Java streaming process. Dependent on the service configuration, data may be handled 

synchronously or asynchronously. As part of the generation process, also the service descriptors 

required by the Service Control and Management component or the Spring application setup including 

the service wiring are created. 

3.7.2 Requirements 
In Table 10, we summarize the specific requirements for the Services Layer discussed in [8]. The notion 

of a service is cross-cutting, i.e., it occurs in many topic areas in [8] and, thus, a summary of all relevant 

requirements is important for the design and realization. Besides these functional requirements, we 

must also take into account the decisions made so far, i.e., that services may offer a two-folded 

communication: 1) communication at lower pace for commands, status and quality properties via AAS 

and 2) soft-realtime communication via streams whereby the stream-integration shall be generated 

and flexible in order to allow for an exchange of the streaming approach. This is in particular important 

for monitoring (R4b, R4c, R4e, R4f, R133) of runtime properties and the runtime stream management, 

in particular to start, stop, connect (R20), update (R135), configure (R32), adapt (R69 and R31c, see 

also dynamic service selection in [8]) or dispose (R134c) services on demand. To be integrated in a 

flexible manner, monitoring and service management must be realized based on explicit interfaces, so 

that an exchange of the implementations becomes possible. If feasible, existing interfaces shall be 

utilized.  

In the default stream processing approach in IIP-Ecosphere, i.e., Spring Cloud Stream (see Section 

3.6.2.1), the micrometer69 interface is used to exhibit monitored information in HTTP/REST style. 

Moreover, Spring provides specific management capabilities for Spring Cloud based service 

applications, e.g., to start services in individual processes. As micrometer is supported by several 

(commercial) monitoring tools, it appears to be a valid choice as monitoring interface, which, however, 

must be integrated with AAS (R7). For the stream management, it makes sense to reuse existing 

functionality from the Spring Cloud ecosystem, e.g., the Spring Cloud Deployer. It is important to make 

                                                             
69 https://micrometer.io/ 
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this functionality optional and to enable it when Spring Cloud Stream is selected as stream processing 

engine of a platform instance. However, most of the Spring management providers target rather 

specific (non-edge cloud) environments, so we will rely on the so called Local Deployer and integrate 

it as optional extension of the Service Control and Management component.  

Moreover, the Service Layer must set the scenes for the management of heterogeneous service 

implementations (R113), including platform services that are more likely to be realized in Java or as 

Java interfaces to service implementations of underlying frameworks or platforms. 

Table 10: Requirements for the Services Layer (excluding configuration, storage services, not repeating Table 2 or Table 3) 

Requirement Summary 

R4a Components/services must be described with their interface (input, output) 

R4b, R131b Components/services must be equipped with meta information (version, 
categorization) 

R4c Components/Services must have a queryable state 

R4d The execution of the services must be supervised 

R4e Service monitoring shall be parameterizable 

R4f Service monitoring shall be realized by application-specific services 

R20 Application-specific data paths 

R20b Data paths can have properties/parameters 

R20c Data paths shall be managed by the platform 

R29c, R70, 
R122f 

Services shall describe their own quality properties and functions as AAS 

R31 Container shall contain only the required components/services 

R31b Containers can contain optional components 

R31c, R69 Alternative services for one task, even dynamic exchange of (alternative) services 
at runtime 

R32 Configuration of services via parameters 

R39 Personal data processing only for authorized users 

R41 The security mechanisms shall be integrated with common directory services 

R42 Further safety mechanisms must be configured uniformly  

R46 Collection of personal data must be for specified, clear and legitimate 

R47 Avoiding the processing of personal data as much as possible 

R48 The platforms should not store data for longer than necessary  

R49 Process personal data adequate and relevant to the legitimate purposes 

R52 Store personal data in a structured, common and machine-readable format 

R67 Capture and classify generated cookies or similar identifiers stored on end devices 

R73a-f, R79 Supported datatypes: structured, heterogeneous time series, unstructured data, 
labeled data, meta data/data schema 

R113 Support for different programming languages, e.g., Python 

R132 Platform-supplied and application-specific services shall be supported 

R133 Runtime support for applications (and the services an application consists of) 

R133a Status of services 

R133c Support for changing the status of services 

R133d Detection of failure states and functions to mitigate failures 

R134c Removal/disposal of services 

R135 Update of applications (and the services an application consists of) 

3.7.3 Service Environments 
In the IIP-Ecosphere platform, the service environments provide implementation and execution 

support for services realized in different programming languages. Java services and non-Java services 
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are integrated differently into (a Java-based stream-based) service execution engine. While Java 

services can be directly called, non-Java services are executed as individual processes and receive their 

control commands and data via inter-process communication/network, in particular an AAS command 

server. It is desirable to use a single server here, e.g., the “AAS command server”.  

 

Figure 30: Design of the Service environments. 

As the configuration modeling approach does not target the modeling of behavioral code rather than 

configuration options and their interdependencies, the actual implementation of services cannot be 

produced in this step. Such an approach would require a high effort in modelling, in particular (a 
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combination with) modeling approaches that are better suited to represent algorithm behavior, call 

sequences etc. We do not target such complex models as the realization of functional services shall 

ultimately be a human activity, e.g., by a data analyst, AI expert, etc. and shall be integrated with their 

work. Thus, the interfaces produced by the code generation are input to a manual implementation 

process and interrelate in particular with later phases of the data analysis lifecycle. For this purpose, 

the code generation produces interfaces, data classes and serializers for all supported languages, i.e., 

currently Java and Python. The resulting code shall lead to versioned code artifacts (Maven artifacts, 

Python code with “python” as classifier) and be deployed into a repository. For the aforementioned 

deployment descriptors and the automated creation of containers (not part of this release) for the 

service execution, also non-Java dependencies, e.g., to AI frameworks are relevant. The respective 

artifact information is specified for the individual services in the configuration model and the packaging 

of the application artifacts at the end of the code generation process integrates the service code with 

service descriptor and application setup. Ultimately, the application artifacts are made available 

through an own repository mechanism (called the Service Store in [30]) so that either the automated 

generation of containers or the Service Management and Control component on the target resources 

can obtain the service code and install/execute it. 

Figure 30 illustrates the concepts and relations of the service environments. The central package 

(environment) represents both, the basic service environment for Java and Python. This package (on 

the left side of Figure 30) defines the Service interface with all operations discussed for an IIP-

Ecosphere Service in Section 3.7.3. The states from Figure 31 are represented in terms of the 

ServiceState enumeration, the four main kinds of services in terms of the ServiceKind 

enumeration.  

A service realization is free to fill the service meta-information as desired, e.g., through code 

generation or by reading the information from a file. As the Service Management and Control 

component relies on service deployment descriptors, one obvious approach is read out the relevant 

information from that descriptor. As these descriptors are given in YAML format, the two classes 

YamlArtifact and YamlService are part of the service environment to read and represent that 

information. It is important to recall that we need here only a part of the information in the 

deployment descriptor, e.g., the technical information on how to transfer network ports or how to 

start a Python process are not required. Thus, the two classes represent only the relevant information 

and the YAML parser is commanded to ignore all further information. In turn, both classes can be used 

as a basis to realize the parsing of the deployment descriptor of the service management and control 

operations in Section 3.7.3. For this purpose, parts of the (Java) service environment are imported into 

the Service Management and Control component and used there. 

The Java service environment also provides a ServiceMapper, a helper class that binds a service 

against a given AAS command server. Moreover, the ServiceMapper registers also the available 

metrics (see below) in the AAS command server. Ultimately, the Starter realizes a basic (optional) 

process to register all services given in a YAML service descriptor and to start the AAS command server 

on a given port. Services may also take care of a self-registration as it is the usual approach for Spring-

based service implementations. 

The right side of Figure 30 illustrates the extensible resource and service metrics framework based on 

the work of Miguel Gómez Casado [2]. All information to be monitored is represented in terms of 

gauges, counters or timers as defined in the micrometer monitoring interface70. We opted for 

micrometer, because a number of well-known monitoring tools such as Dynatrace support this set of 

concepts and because Spring Cloud Stream already exposes several default metrics via this interface. 

                                                             
70 https://micrometer.io/docs/concepts  

https://micrometer.io/docs/concepts


 

 
 

IIP-Ecosphere Platform Handbook 

63 

In more details, a gauge is a handle to get the current value of a monitored property, e.g., the number 

of threads in a running state. A counter is something that can be incremented or decremented by a 

fixed amount, while a timer is intended for measuring short-duration latencies, and the frequency of 

such events.  

Micrometer provides interfaces and basic implementations for these concepts for the provider/service 

side, a JSON format to transport the information and through Spring a server to expose this 

information in terms of REST. However, the use of the micrometer ends at the service side, as typically 

accessing the monitored information is not part of the interface. Usually, the information is requested 

through some form of REST client. This would contradict our basic requirement to try to realize all 

(distributed) communication via AAS (R7) or Industry 4.0 protocols (R14). Therefore, we use the REST 

information only locally and map this information into the AAS of the respective services. Moreover, it 

would be convenient to access the data of the meters in uniform manner also in other platform 

components, e.g., in the platform monitoring component. The first step towards this goal is to realize 

a request-side implementation of the micrometer representing (distributed) meters (package 

environment.metricsProvider.meterRepresentation). The second step is to encapsulate 

the communication, i.e., the micrometer REST communication as well as the AAS representation of the 

metrics. This is done in terms of MetricsExtractorRestClient and MetricsAasConstructor 

in environment.metricsProvider.metricsAas. Finally, the MetricsProvider in 

environment.metricsProvider defines the unified access to predefined micrometer elements 

such as the system memory, but also custom meters, e.g., to measure the stream throughput. We 

consider monitored values as properties of the respective AAS submodel elements. To obtain the 

values, we attach functors to these properties to read out the monitored values. These functors may 

either rely on polling individual values via VAB [2] (pure R7) or on pushing the entire metrics provider 

via the Transport Layer (R7 and R14) into a local data instance attached to the AAS functors. 

The classes discussed so far are intended for generic stream processors. Spring Cloud Stream and 

Spring Boot require specific code for services, the integration of the metrics and for their startup 

process. While the built-in metrics can be activated through a setting in the Spring application setup 

and by adding a respective dependency, the additional metric mechanisms defined in 

environment.metricsProvider are not automatically integrated. As discussed in more detail in 

[2], this is handled in the VAB poll approach by the extended MetricsProvider for Spring, the 

RestAdvice and the MetricsProviderRestService. Moreover, the startup code in Starter 

hooks into the Spring startup process, i.e., it obtains the Spring Rest server port, it attaches the port to 

the MetricsExtractorRestClient used by the upcoming services and starts the AAS command 

server of the parent class at a point in time when this is permissible for Spring. The Starter class is 

then integrated by the code generation in the actual service start code, which finally consists of just a 

few methods refining or delegating work to the Starter classes defined in the service environment. 

So far, we exclusively discussed the Java side of the service environment. Except for the monitoring 

and the Spring-specific implementation, the Python service environment is to a large degree a mirror 

of the Java service environment. Differences are: 

• The Python environment is accessed through the Java representation of services in the 

streaming engine, i.e., the Python environment realizes an AAS command server (currently 

available for the TCP-based VAB protocol, the HTTP-based protocol is under development) as 

well as the soft-realtime data transport (not available in this release). If possible, the VAB 

server shall also serve for the data transport, even if some modifications to BaSyx classes are 

required.  

• A second difference is that we do not plan to monitor the non-Java environments unless 

explicitly required, because stream measures can be taken on the Java side. Resource 
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measures such as memory consumption can be combined with the related Java process, i.e., 

the monitoring there requires an extension so that the resources consumed by the Python 

process can be taken into account. This form of Python resource monitoring is not part of this 

release of the platform. 

The service environment is subject to automated regression and integration testing. In particular the 

monitoring classes are tested extensively [2]. Also the remaining classes of the Java/Python service 

environments are executed in regression tests, i.e., the Java based build environment also executes 

Python unit tests. However, many methods are intended to be used by a stream-based application. As 

done with the components before, a manual implementation of a test application and execution in 

particular of the Spring service environment might be helpful here, but may fall short for the plain Java 

environment (test metrics are currently accounted per Java project rather than across projects). While 

currently the test coverage of the service environment could be increased, the classes defined there 

are tested in terms of integration tests, e.g., through test artifact for the Spring Service Management 

and Control implementation.  

So far, no performance evaluations of the generated code and the underlying service environment 

have been conducted. Therefore, the manually implemented service chains from the experiments 

discussed in Section 3.6.3.3 could be used as baseline.  

Besides service-level tests, performance experiments for the VAB poll approach have been performed 

in [2]. Retrieving a meter via an AAS on a current Lenovo Z50-70 laptop requires 4-5 ms after a settling 

time of 200 repetitions, whereby most of the time is attributed to the AAS communication. In contrast, 

initial requests are comparatively slow (8-10 ms), probably an effect of JVM settling periods. Moreover, 

some meters can schedule own update operations, which doubles the round-trip time. In the current 

implementation, the MetricsProvider performs such updates only on request, thus, saving roughly 

factor 2 response time in average. The internal operation of the meters, in particular parsing the JSON 

information requires at maximum 70 µs, i.e., most of the response time can be attributed to 

communication and AAS operations. A modification of BaSyx classes as mentioned above for a unified 

data transport could also speed up these operations. 

While the readings for the monitoring work fine, they are also just taken for individual measures rather 

than for full AAS. Polling all monitoring information from an AAS may induce a significant response 

time. Moreover, as detected during tests with the full platform components, a remotely deployed AAS 

reads out all values of all properties during its serialization for client use. This implies significant 

overhead and, more dramatically, in some cases even hang up the component. Thus, as indicated 

above, we realized a second approach based on turning the metrics provider into a micrometer-based 

JSON format and push this information into the (serialized remote) AAS. To avoid the problems 

mentioned before, the information is not written into the functors or the AAS rather it is implemented 

as a data instance shared by all functors of the service (represented by a submodel element). This 

shared instance can quickly react during AAS serialization (significantly faster than the 4-5 ms 

mentioned above) and initializes the transport connector lazily upon the first request. Moreover, this 

approach decouples the startup of the AAS implementation server as only the platform transport 

broker/server is used, which was already started along with the platform. Alternatively, for a plain AAS 

realization (R7), we could have realized a similar push approach through an operation on server side, 

but refrained from this idea as such a collector method shall not be part of the visible interfaces of the 

platform. 

However, the push approach via the Transport Layer could leave the impression that the work on 

individual meters in an AAS is superfluous, in particular as the mechanism could equally be used to 

realize the central platform monitoring (cf. Section 3.8). This is not the case as discussions with other 
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AAS users show: Nowadays, typical AAS tend to expose a huge amount of static and dynamic data for 

the described assets, i.e., the expected/actual resource consumption is often mandatory in some form. 

3.7.4 Service Control and Management 
The Service Control and Management component defines the service-interface of a (compute) 

resource towards the platform. It must provide means to load a service implementation onto the 

resource (in terms of binary artifacts, e.g., from a central platform server), to identify the descriptive 

information about services (id, name, description, version, service kind) and to provide access to 

runtime capabilities, e.g., the state of the service, reconfiguration capabilities, or runtime monitoring 

values. As the execution of the services happens within their (programing-language) specific 

environment, the control and management component can be realized in generic manner. 

Individual services must comply with a lifecycle that can be queried and influenced by the platform. 

The underlying lifecycle state machine is depicted in Figure 31. Services can be downloaded from the 

service store and become Available on the hosting resource. When triggered through the platform 

and the ServiceManager, a service is deployed (Deploying) and gradually turns into the Running 

state. If nothing bad happens at runtime, a service is stopped through the ServiceManager (turns to 

Stopping and Stopped) and if requested, may be removed from the resource (Undeploying, 

afterwards Unknown, not shown in Figure 31). At runtime, a service may be reconfigured, adapted or 

migrated (which may need passivation and activation). Further, a service may fail, which can lead to a 

recovery procedure (in the lower sub state machine in Figure 31). If the service becomes operational 

again, it jumps back into the upper sub state machine and there into the last “normal operation” state 

(via the UML H* deep history state) and goes on from there. 

 

Figure 31: Service states (comments cropped) 
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Figure 32: Service interfaces and management 
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Figure 32 illustrates the design of the Service Control and Management component. At the core of this 

layer is the ServiceManager, which performs operations such as starting and stopping individual 

services. Services are packaged and transported in terms of artifacts, i.e., an artifact may contain 

multiple services realized in different programming languages. Instead of the actual instances that may 

be located in a different container, the ServiceManager primarily operates on descriptors, such as 

the ArtifactDescriptor detailing structural information on contained services. Access to artifacts 

and services happens through identifiers71, whereby several operations and information accesses are 

delegated by the service manager to the descriptors or through the respective AAS to the AAS 

implementation server directly approaching the respective service instance. 

The ServicesAasClient provides access to the properties and operations of the AAS of the service 

layer. To avoid adding even more visual complexity to Figure 32, we did not indicate the relation 

between ServiceManager and ServicesAasClient. Actually, both implement the same interface 

called ServiceOperations, which contains the basic operations of ServiceManager not requiring 

the (repeated, potentially inconsistent instantiation of) service descriptors. The ServicesAasClient 

can be used by upstream layers to conveniently access the services AAS. 

Different technologies can be used to realize and execute service chains, i.e., to efficiently pass data 

along pre-defined data paths between the services, to transform data where needed etc. As part of 

such a service chain, data is turned into some form that can be transported by the utilized protocols. 

This serialization as well as the transformation of data to fit the input/output requirements of a service 

is part of the mechanisms of the Transport Layer. As discussed in Section 3.6.2, we rely on Spring Cloud 

Stream as default (stream-based) service execution engine. An integration of the transport level 

protocols and serialization mechanisms for Spring Cloud Stream was introduced in Section 3.6.2. As 

also stated there, we foresee that the IIP-Ecosphere platform shall support also other service engines 

in a flexible manner. Thus, the design of the Service Control and Management Component must allow 

for the execution of the management binding against alternative service execution technologies. For 

this purpose, the ServiceManager as well as the related descriptors are defined in Figure 32 as 

interfaces (in the package services), while the actual implementation is realized in a separate, 

alternative package (services.spring for the default engine), which hooks itself as implementation 

into the basic service management interfaces via JSL. 

The default implementation of the ServiceManager in services.spring relies on Spring Cloud 

Stream, the Spring deployer mechanism and, in turn, on the Spring Boot framework. For Spring-based 

services, the packaging happens in terms of specifically packed JAR files (a form of “fat”, standalone 

JAR files also containing the required Spring base classes). Besides the Spring application configuration 

defining the actual wiring of the services, such artifact JAR files contain a deployment specification 

detailing the services, their communication, service dependencies and, if required, also non-Java 

service implementations and their integration. Following the conventions of the platform, these 

deployment specifications are stated in terms of YAML files. Both, the Java object representation of 

the YAML contents as well as the JAR artifacts are linked against the Spring-specific Artifact and Service 

Descriptors, which contain additional information required to manage services using Spring. The 

Spring-based ServiceManager utilizes the Spring deployer mechanism, i.e., the local Spring 

deployer. The deployment specification also allows defining external service implementation 

processes, e.g., for Python, so that the data communication is managed by Spring-services while the 

actual implementation of the service operates in an own process. By default, services are executed in 

their own processes so that services can be restarted in case of failures (R9) without accidentally 

shutting down healthy services. However, such a single-process deployment may not be desired in 

                                                             
71 Identifiers are just services to comply with AAS types. Identifiers may be global to an infrastructure or local to 
a resource. Here, TT Plattformen will come up a naming schema after we made first experiences. 
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some cases so that the deployment descriptor allows for specifying “ensemble” services, i.e., Spring-

services that must be executed within the same process.  

The AAS for the Service Layer consists of a services sub-model indicating as sub-model element 

collections the (locally) installed artifacts and the contained services, the installed services and their 

properties as well as the data paths/relations among services. When a service is started, its state 

changes and for each data path a relation instance is created, i.e., a relation represents the instantiated 

data path between two service instances and points to the actual start and end service. Start and end 

service occur in the AAS as soon as the respective service is created. In turn, this information is used 

by the service manager to determine available services, e.g., during startup of dependent services in 

service chains. Most operations provided by the ServiceManager (also via AAS) are parameterized 

by an artifact or service identifier. However, internally the operations are bound to the resource the 

respective artifact/service is installed on, so these operations do not occur at the services in the 

services collection rather than for the resource in the resource collection. We will detail the resources 

in Section 3.8.1 as part of the design of the ECS runtime. As all those operations may fail, the 

implementation must not only return a result but also carry information about thrown exceptions 

when calling an AAS operations.  

The service manager AAS is primarily intended as service-level control and monitoring interface. 

Services are supposed to register themselves with the respective local AAS command server (see also 

Figure 3 in Section 3.1) to react on command requests. Similarly, when monitoring information is 

requested, the (central or locally deployed) AAS communicates with the respective AAS command 

server. In case of services not implemented in Java, the respective service environment must provide 

an AAS command server and pass the information on to the service instances. 

As discussed above, soft-realtime data streams shall not be transmitted through AAS rather than 

through the streaming engine (for our default engine using one of the protocols of the transport layer). 

If the service implementation is done in Java, the streaming engine will directly communicate with the 

service (potentially involving glue code generated from the platform configuration). If non-Java service 

implementations are used, the service representation in the streaming engine must route the data to 

the respective service environment, which shields the services from the actual communication and 

passes the data in adequate form to the respective service instances. 

The requirements in [8] do not explicitly define the properties that shall be monitored for services. 

R29a, R70, R122f just indicate that services may have quality properties, e.g., to support adaptive 

service selection. Monitoring probes may be generic or bound to the services and, thus, are realized in 

the service environment (in particular the default one for Java, cf. Section 3.7.3). Similarly, the creation 

of related parts of the AAS are realized there. Further, probe services may be inserted to perform 

application-specific monitoring. However, probe services are currently not realized. 

The ServiceManager and its AAS are validated in terms of regression tests. As the ServiceManager 

and the descriptors are interfaces/abstract classes, the validation must set up a pseudo 

implementation for basic testing. The Spring Cloud Specific functionality is tested through a 

handcrafted service artifact with simple contained services and multiple deployment descriptor 

targeting different artifacts, e.g., with or without process ensembles. This artifact is based on the Java 

service environment (cf. Section 3.7.3). In these tests, the setup of the ServiceManager provides a 

broker, dynamic network settings are handled by a local NetworkManager and the service manager 

is utilized for starting and stopping services. The running services are validated in terms of their data 

throughput and the actual metric values that the services provide, i.e., that the metrics defined in the 

service environment (cf. Section 3.7.3) become part of the AAS of the service management. Moreover, 

also the dynamic aspects of the AAS are validated, in particular during startup in order to figure out 

whether a service is already running.  
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Currently, as prescribed by the development streams in Section 3.2, design and realization focuses on 

a basic implementation to apply the IIP-Ecosphere approach as early as possible to existing resources. 

Advanced capabilities such as switching among alternative services or migrating services are subject 

to a later release.  

3.7.5 Requirements Discussion 
In this section, we review the already realized requirements for this layer. As mentioned in the sections 

before, we aimed for a basic implementation in this release, which is reflected accordingly in Table 11. 

Table 11:  Review of realized68 requirements for the Service Layer (based on Table 2, Table 3 and Table 10) 

Requirement Summary 

R4a Services with input/output in ServiceDescriptor and AAS (services sub-
model) 

R4b, R131b Metadata in ServiceDescriptor and AAS (services sub-model) 

R4c State in ServiceDescriptor and AAS (services sub-model) 

R4d The generic execution state of Spring Cloud Stream is supervised, also the resource 
consumption and stream processing or applications can define custom metrics. 
The state is reflected into the service descriptor, state and monitoring information 
(as far as enabled) show up in the AAS (services sub-model). So far, services are not 
re-started if they fail as this is not provided by the Spring Local Deployer. 

R4e Not yet implemented, but possible e.g., through service descriptor. 

R4f Possible via probe services, but no basic implementation provided so far. 

R20 Application-specific data paths are supported through the streaming library (by 
Spring Cloud Stream, even at runtime). Data paths are dynamically indicated in the 
AAS (sub-model relations). 

R20b Data paths can have properties/parameters. Basic properties like the protocol or 
the encoding are supported by Spring Cloud Stream. Additional properties can be 
specified in the service deployment descriptor (Yaml file in artifact). 

R20c Data paths shall be managed by the platform through the configuration (Section 
6), code generation, Spring application setup/service deployment descriptor and 
during service startup, e.g., taking dependent services into account. 

R29a, R70, 
R122f 

Services describe their functionality and their runtime properties (as provided, 
selected, implemented) through the Service Management and Control AAS, in 
particular supported by service monitoring.  

R31 A container shall contain only the required components/services. This is supported 
through the service artifacts, that will be composed from the configuration model 
for a certain target deployment, i.e., with the (minimal) required resources. 
Automatic creation of multi-resource service artifacts is subject of the next release. 

R31b Artifacts may contain optional components, which are then not executed. Optional 
services and their wiring is not subject of this release. 

R31c, R69 Dynamic exchange of service implementations is prepared by separating service 
implementation and (generated) binding against the stream processing library. The 
service interfaces allow for dynamic exchange and service migration and the 
operations are available through the AAS of the service management and control 
component. The realization of the operations was not part of this development 
stream/release. 

R32 Services can declare and describe typed parameters. The ServiceManager 
supports changing these configuration parameters. 

R38-R68 A variety of security and privacy mechanisms are introduced (e.g. in Figure 17) 
which ensure relevant security and privacy requirements. Security mechanisms are 
indicated in the architecture but not part of the platform implementation of this 
release. 
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Requirement Summary 

R73a-f, R79 As argued for the Transport/Connector components, we do not limit or prescribe 
types. 

R113 The ServiceManagement and the stream processing approach are both realized 
in Java. Thus, services realized in Java can be directly integrated with the stream 
processing and be executed in the same threads/processes. Support for different 
programming languages, e.g., Python via IPC is foreseen in terms of the service 
environments. A basic version of the service environment for Python is available, 
although HTTP-VAB and streaming data communication are not part of this 
release. 

R132 Application-specific services are supported through service interfaces as well as 
integration of artifacts in the code generation and packaging process.  

R133 Runtime support for applications (status of services) is provided via the 
ServiceManager and the AAS. 

R133a The status of services is provided via the ServiceManager and the AAS 

R133c Within the limits of the service state machine, the ServiceManager and the AAS 
provide means for adjusting the state of a service. In particular, functions for 
activating, passivating and migrating services are provided and generically 
implemented. 

R133d No specific functionality to resolve error conditions is provided in this release. 

R134c The ServiceManager supports stopping as well as removal/disposal of services 
and service artifacts. 

R135 An operation for updating services is provided and available through the AAS, but 
the operation itself is not implemented in this release. 

 

We conclude, that most of the basic requirements for this layer are already implemented. Advanced 

functionality such as dynamic service operations or monitoring as well as security and data protection 

mechanisms are subject to one of the next releases. 

3.8 Resources and Monitoring Layer 
The Resources and Monitoring layer enables the deployment of services to (edge, server, cloud) 

devices, allows for overarching management of the devices and provides aggregated monitoring 

information about running resources and services. Moreover, the first platform components for the 

overall management of resources, namely the device management and the platform monitoring are 

located in this layer. We will discuss the ECS runtime in Section 3.8.1, the device management in 

Section 3.8.2 and the monitoring in Section 3.8.3. 

3.8.1 ECS runtime 
Flexible and heterogeneous deployment to edge, server and cloud devices is a central capability of the 

IIP-Ecosphere platform. [8] defines several requirements for the envisioned deployment approach. 

Table 12 summarizes the requirements to be taken into account. R25c and R25d target the (central) 

management of resources and, thus, are addressed by the device management in Section 3.8.2. 

Table 12: Specific requirements for the heterogeneous deployment (excluding configuration) 

Requirement Summary 

R23 Support for dynamic deployment 

R24 Deployment to different types of resources/hardware 

R25 Resource properties or functionalities described as AAS 

R25a AAS of a resource shall be realized by an ECS runtime 

R25b AAS of available resources must be announced to the platform 

R25e Resource AAS must describe static properties 
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R25f, R103a Resource AAS must describe dynamic properties, e.g., the resource utilization, the 
memory usage or the utilization of CPU/GPU/TPU cores 

R25g Resource AAS must contain functions for the deployment 

R25h Resource AAS shall contain functions for exchanging deployment units at runtime 

R26 Deployment to on-premise resources 

R27 Optional deployment to connected IIP-Ecosphere instances 

R28 Optional deployment to cloud resources, e.g., Google Cloud or Gaia-X 

R29 Deployment unit must provide an explicit interface in terms of an AAS 

R29a (Quality) properties and functional interfaces of deployment unit via AAS 

R29b Deployment unit AAS shall be linked to resource AAS 

R29c Contained services/containers shall be made available via the deployment unit AAS 

R30 Deployment unit must be encapsulated as container 

R30a Deployment units on IT level must be technologically uniform 

R30b Deployment units on OT level can be technologically different 

R30c Platform can support the integration of external container repositories 

R31 Container shall contain only the required components/services 

R31b Containers can contain optional components 

R31c Components/services in a container may be exchanged dynamically 

R32 Container can contain data/models, to be configured via parameters 

R33 Container can contain local data stores 

R35 Sampling rate of 2 ms through container 

R36 Optional configuration of resources 

R36a Writing of resource configuration 

R36b Reading of resource configuration 

R37 Optional remote maintenance of resources 

R38-R44 Security requirements 

R45-R68 Data protection requirements 

 

As described in [30], each device shall execute a basic runtime component (ECSRuntime) providing 

the AAS of the device and managing the containers in which individual services are executed. Figure 

33 illustrates the design. The fundamental parts are the ResourceUnit representing the AAS of the 

resource on which the runtime component is executed as well as the DeploymentUnit containing 

the services executed on the resource. The Service Management and Control component from Section 

3.7.3 contributes information to the DeploymentUnit, e.g., the running services and their 

instantiated relations. Through the ECS runtime, the device can receive and execute commands from 

the platform, such as downloading or starting a container. Moreover, different container technologies 

must be considered and addressed in a uniform manner through the ECS runtime.  
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Figure 33: ECS runtime for Service Deployment (comments partially cropped) 
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Different ways to install such an ECS runtime are possible depending on the capabilities of the 

underlying device. The default approach is to provide an automatically created container with the 

instantiated ECS runtime as well as one or multiple (dynamic) containers for the services. Depending 

on the capabilities of the device, e.g., whether a suitable version of Java is available, the ECS runtime 

could also directly be installed on a device. If in the future a resource description such as the AAS of 

the ECS runtime is standardized (and IIP-Ecosphere platform is compliant with that standard), one 

could also imagine that the device already ships with an ECS runtime (possibly realized in some other 

language than Java) or it can be installed from the store of the device vendor. Measures to install, 

manage and update such installations are subject to the device management (Section 3.8.2). 

As already emphasized in [8, 30], one fundamental basic work for the resource abstraction runtime is 

the LNI 4.0 edge configuration usage view [21]. [30] subsumes and extends [21] and [8] integrates 

relevant requirements from [30]. As the need for managing resources and containers on resources, in 

particular edge devices, is known in Industry 4.0, platforms [27] and also other work address this topic 

in various ways. In addition to the 21 platforms analyzed in [27], also approaches like OpenHorizon72 

or the IBM Edge Application Manager73 are available. In recent time, also container orchestrators such 

as Kubernetes74 became popular. Although there are significant overlaps, there are also important 

differences between these approaches and the ECS runtime in IIP-Ecosphere. One main difference is 

the general requirement R7 that all interfaces in the IIP-Ecosphere platform shall be based on AAS 

aiming at an interoperable integration of heterogeneous devices (based on an agreed structure, at 

least within IIP-Ecosphere). Moreover, it is important to point out that IIP-Ecosphere aims at a flexible 

integration of components leaving the final decision to the installing company through the 

configuration model, i.e., we do not make decisions such as statically relying on Kubernetes. In contrast 

to existing edge management approaches, as already pointed out in [30], IIP-Ecosphere aims at 

supporting more sophisticated management operations on the edge, in particular for data paths and 

relations as discussed in Section 3.7. 

Figure 33 illustrates the design of the ECS runtime component. Figure 2 in Chapter 3 already discussed  

the context/stack for this component, i.e., on top of the AAS support, network management, transport 

and connectors and (optionally) service layer, the ECS runtime is supposed to provide a resource 

abstraction to manage the containers containing services to be executed on a resource. At the heart 

of the component is the ECSRuntime which acts as internal façade32 for the ECS runtime AAS. Behind 

that façade, the actual operations are realized to be able to customize the ECS runtime for the resource 

at hands. Two example devices (produced by Phoenix Contact or Lenze) are indicated in Figure 33, but 

also a GenericJavaRuntime, which relies on an abstract ContainerManager (along with a 

ContainerDescriptor, akin to the service descriptors in Figure 32). IIP-Ecosphere provides a plain 

Docker75 container manager (DockerContainerManagement). As for the service descriptors, the 

ContainerDescriptor is manifested in terms of a Yaml file, which is supposed to form the main 

entry point for adding a container at runtime, i.e., the platform specifies a URI pointing to the Yaml 

file, which indicates the name of the packaged container at the same location. We refrained from 

adding the descriptor to the packaged container as this may not be permissible for some container 

formats. A container manager for Kubernetes via Industry 4.0 protocols (R7, R14a) is in development 

but not part of this release.  

The EcsAasClient provides access to the properties and operations of the AAS of the resources 

layer. To avoid adding even more visual complexity to Figure 33, we did not indicate the relation 

                                                             
72 https://www.lfedge.org/projects/openhorizon/  
73 https://www.ibm.com/docs/en/edge-computing/4.1  
74 https://kubernetes.io/de/  
75 https://www.docker.com/  

https://www.lfedge.org/projects/openhorizon/
https://www.ibm.com/docs/en/edge-computing/4.1
https://kubernetes.io/de/
https://www.docker.com/
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between ContainerManager and EcsAasClient. Both classes implement the same interface called 

ContainerOperations, which contains the basic operations of ContainerManager not requiring 

the (repeated, potentially inconsistent instantiation of) container descriptors. The EcsAasClient can 

be used by upstream layers to conveniently access the ECS runtime AAS. 

At a glance, Figure 33 does not indicate much monitoring support for the ECS runtime except for some 

AAS properties in ResourceUnit. As the Java service environment (cf. Section 3.7.3) provides a generic 

and extensible monitoring approach, we re-use it here although the ECS runtime is not a “service”. 

Thus, the ECS runtime defines a MonitoringProvider as well as a regular monitoring update 

operation that is started as part of the JSL lifecycle descriptor of the ECS runtime (not detailed in Figure 

33). The operations to create the AAS refer to the MetricsAasConstructor of the Java service 

runtime mirroring a default set of meters of the monitoring provider into the AAS of the ECS runtime 

(therefore, currently some runtime properties in ResourceUnit are realized while others appear as 

omitted). Depending on future decisions, a specific set of resource meters can be defined and applied 

to both components in uniform manner. 

Figure 34 illustrates two potential deployments to aforementioned example devices (including AAS 

server components, deployment interactions, a broker server and stereotypes from the 

UMLsec/security profile). 

The AAS of this component is represented by EcsAAS, actually the resources sub-model already 

mentioned in Section 3.7. This sub-model consists of the ResourceUnit instances (corresponding to 

single ECS runtimes) representing the resources and the installed/running Container instances. The 

ResourceUnit offers the operations to manage containers on the respective resource. Moreover, 

ResourceUnit is extended by service operations if the resource offers a ServiceManager (either 

installed in the same or in a different container on the same resource) as discussed in Section 3.7.  

As for the generic IIP-Ecosphere components, regression tests validate the basic operations of the ECS 

runtime, i.e., an artificial test container manager and its AAS. For the Docker-based container 

management, the regression tests utilize a small Open Source container image and exercise the 

implemented operations. Akin to services, currently advanced container operations such as update 

and migration are not implemented.  

Initial experiments with containers and AAS indicated that properties and operations work as 

expected. Simple operations can be executed in at maximum 5 ms runtime (or significantly less for 

monitoring properties as discussed in Section 3.7.3). Complex operations, e.g., starting a container 

depend on the time that is required by underlying operation of the container implementation, e.g., 

Docker. Direct execution on an operating systems was not necessarily better in this regard. However, 

this experience strongly depends on the AAS and protocol implementation and, thus, is not 

representative. Further experiments with the Service Management and Control component from 

Section 3.7 will provide more insights.  
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Figure 34: Example deployments to empty (left) and loaded (right) edge device (comments and further deployment nodes 
representing the platform partially cropped) 
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Table 13: Review of realized68 requirements for the ECS runtime component. 

Requirement Summary 

R23 The ECS runtime provides the basis for dynamic deployment units. The actual 
deployment units are packaged during code generation for the configuration 
model. However, automatic creation of containers is not part of this 
release/development stream. 

R24 Generic and specific implementations of the ECS runtime aim at supporting the 
deployment to different types of resources/hardware. So far, we provide a generic 
ECS runtime in Java with a default container manager for Docker. 

R25 Common functionalities of the resources (as well as service operations) are 
defined in the AAS of this component. The AAS also reflects the monitored 
resource meters of an ECS runtime instance. 

R25a The AAS of a resource is realized by the IIP-Ecosphere ECS runtime. 

R25b The AAS can and shall be deployed to a central platform AAS, in particular to 
integrate with the service management operations. This may have to be 
complemented with a registration function in the resource/device management (cf. 
Section 3.8.2).   

R25e Basic static properties are provided such as resources hosting a container. 

R25f, R103a The AAS also reflects the monitored resource meters of an ECS runtime instance. 
More specific meters such as the utilization of GPU/TPU cores may be added in one 
of the next releases. 

R25g Resource AAS (ResourceUnit) defines functions for the deployment. 

R25h Resource AAS (ResourceUnit) does contain functions for exchanging deployment 
units at runtime, but the functionality is currently not implemented. 

R26 Deployment to on-premise resources is supported by the ECS runtime. 

R27 Optional deployment to connected IIP-Ecosphere instances is intended for the third 
development stream and, thus, currently not realized. 

R28 Optional deployment to cloud resources, e.g., Google Cloud or Gaia-X is considered 
in the third development stream and, thus, this requirement is currently not 
realized. 

R29 The deployment unit provides an explicit interface in terms of an AAS. 

R29a Functional interfaces as well as quality properties of a deployment unit are 
provided via AAS. 

R29b The deployment unit AAS is linked to the resource sub-model and the services sub-
model. 

R29c Contained services/containers are available through the deployment unit AAS. 

R30 A deployment unit is encapsulated as container, in particular the services are 
encapsulated in artifacts to be deployed individually into containers. 

R30a Deployment units on IT level shall be technologically uniform, through the general 
use of Docker containers. The ContainerManager supports the exchange of the 
respective implementation/integration. 

R30b Deployment units on OT level can be technologically different, but we aim for 
Docker as the default technology. The ContainerManager supports the 
exchange of the respective implementation/integration. 

R30c The platform can support the integration of external container repositories. The 
ECS runtime allows to obtain containers via an URL, which may point to an external 
container repository. Container repositories are not part of this release. 

R31 A container shall contain only the required components/services as discussed in 
Section 3.7. This depends on the packaging, for which an automated approach is 
not part of this release. 
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R31b Artifacts may contain optional components, which are then not executed as 
discussed in Section 3.7. This depends on the packaging, for which an automated 
approach is not part of this release. 

R31c Components/services in a container may be exchanged dynamically as supported 
by the service management in Section 3.7. However, this functionality is not part of 
this release. 

R32 Container can contain data/models. These are artifacts in the containers and 
respective (typed) parameters are offered by the services cf. Section 3.7. So far, 
the packaging of further resources is not realized. 

R33 A container can contain local data stores (in terms of services cf. Section 3.7). Data 
stores are not part of this release. 

R35 AAS operation/access speed in containers was around 5 ms. A sampling rate of 2 
ms through a container is plausible, but must be shown in future experiments. 

R36 Configuration of resources is part of device management, currently not realized 
and intended for a later development stream. 

R36a Configuration of resources is part of device management, currently not realized 
and intended for a later development stream. 

R36b Configuration of resources is part of device management, currently not realized 
and intended for a later development stream. 

R37 Remote maintenance of resources is part of device management, currently not 
realized and intended for a later development stream. This can potentially be 
integrated with container orchestrator operations. 

R38-R44 Security mechanisms are indicated in the architecture but not part of the platform 
implementation of this release. 

R45-R68 Data protection mechanisms are indicated in the architecture but not part of the 
platform implementation of this release. 

 

We conclude, that basic requirements for this layer are implemented. However, in comparison to the 

service management, connectors or transport component, in this component more advanced 

functionality is dependent on the automatic creation of containers or the device management. These 

components are scheduled for future releases. 

3.8.2 Device/Resource Management 
The device management shall support and ease the administration of devices, i.e., compute resources. 

As stated above, e.g. along with the ECS runtime in Section 3.8.1, the notion of devices in IIP-Ecosphere 

is rather broad as it involves edge, cloud and (on-premise) server devices. From a practical point of 

view, the scope includes all devices that potentially can run an ECS runtime (including the IT 

infrastructure from [30]). Also different forms of installation for an ECS runtime as discussed in Section 

3.8.1 are subject to the device management. It is important to recall that following the scope 

prescribed in [30], Industry 4.0 field devices such as machines are out of scope for the IIP-Ecosphere 

platform. 

From [8] we know that the main requirements for the device management refer in particular to the 

"Device Description Store", the "Device Configuration Tool" and the "ECS runtime" introduced in [30], 

i.e., also to the abstraction of vendor dependencies (R25.a), on/offboarding (R25a) or device 

management (R25b). Common management functions which are neither listed in [8] nor [30], e.g., 

mechanisms for human interactions (acknowledgements), management techniques such as device 

templates or import functions for "asset data providers" [30] are desirable, but also well covered by 

existing platforms [27]. Thus, in [8, 30] it is intentionally left open, whether the IIP-Ecosphere just 

focuses on the essential capabilities mentioned in [8, 30] or provides also additional useful capabilities.  
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Besides this freedom, there are requirements that also prescribe the design of the device 

management. One important requirement is R7 which requires the use of AAS for the interfaces of all 

layers/components in the IIP-Ecosphere platform. On the one side, the device management must take 

the information in the platform AAS on available resources into account and use the operations 

provided there to manage resources, i.e., this component can require its own operations in the 

resources sub-model elements collections described in Section 3.8.1. On the other side, the device 

management shall provide relevant own additional operations (such as onboarding, selection of device 

templates) to upper layers such as the user interface of the platform. Where adequate, these 

operations shall be parameterized with the resource identifier from the resources sub-model (cf. 

Section 3.8.1). The functionality of the device management is influenced by given information (through 

AAS events76 and polling, R11), but may also directly influence the resource sub-model elements 

collection, e.g., adding/removing devices (potentially requiring subsequent operations, e.g., 

shutdown/migration of containers or services). 

Moreover, the device management must take the virtual character of the IIP-Ecosphere platform into 

account (cf. Section 3.1). Therefore, it is mandatory that the device management is able to operate on 

multiple AAS of the structure described in this document rather than on “just” a singleton AAS of the 

IIP-Ecosphere platform. This allows taking other IIP-Ecosphere platform instances as well as underlying 

mapped-in platform instances into account. However, it is important to understand that access to 

these further AAS may be restricted, e.g., management operations are not allowed to be executed. 

This may be represented in terms of missing operations or AAS access limitations77. 

Primarily, for the device management Java 1.8 compatible libraries shall be used, although this 

constraint may be relaxed for this component as it will be utilized in the central IT installation. 

Regarding security (R38-R44) or data privacy (R45-R68), this layer may provide supporting 

administrative functionality. 

Currently, ongoing work details the design of the Device/Resource management. Neither the design 

nor the implementation are part of this release. 

3.8.3 Monitoring 
Service execution shall be monitored, in terms of resources but also in terms of functionality, e.g., 

through application specific probes and alerts. Therefore, the IIP-Ecosphere platform foresees a set of 

generic built-in monitoring probes (cf. Section 3.7) as well as application-specific probe extensions that 

communicate their information via topic streams to one or multiple monitoring information 

aggregators. In turn, aggregators provide their state to upper level layers. Also (application-specific) 

alarming via specific streams shall be supported. In addition to the service monitoring, the IIP-

Ecosphere platform shall also monitor resources via the installed ECS runtimes and also the execution 

of the ECS runtime. 

While the probing of the individual services or ECS runtimes/resources happens on the devices (and 

thus belongs to Section 3.7 or Section 3.8.1, respectively), the main task of this component is to 

aggregate the information on IT infrastructure level (see also [30]). The aggregation of the received 

values shall follow existing guidelines, approaches, relevant standards or norms in I4.0. As the IIP-

Ecosphere platform shall operate across a plethora of resources (and connected or underlying 

                                                             
76 If possible, the component may rely on change events of the AAS implementation. However, in BaSyx events 
are currently in realization and, thus, not yet reflected in the AAS abstraction introduced in Section 3.5. Thus, 
the component design shall foresee event-based change notifications as well as (potentially less efficient) 
polling/scanning of the respective AAS structures. 
77 Currently, security and access restriction mechanisms are not (fully) in place in BaSyx and, thus, not reflected 
in the AAS abstraction introduced in Section 3.5.  
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platforms and their resources, if available), the monitoring component shall foresee (optional) 

hierarchical aggregation to distribute the input load and to increase the efficiency. 

As described for the device management, the monitoring component must take the virtual character 

of the IIP-Ecosphere platform into account (cf. Section 3.1). Therefore, it is mandatory that the 

monitoring is able to operate on multiple AAS of the structure described in this document rather than 

on “just” the singleton AAS of the IIP-Ecosphere platform. This allows taking other IIP-Ecosphere 

platform instances as well as underlying mapped-in platform instances into account. However, it is 

important to understand that access to these further AAS may be restricted, e.g., access to information 

is limited. This may be represented in terms of missing properties or AAS access limitations77. 

Primarily, for the monitoring component Java 1.8 compatible libraries shall be used, although this 

constraint may be relaxed for this component as it will be utilized in the central IT installation.  

Currently, ongoing work details the design of the Monitoring component. Neither the design nor the 

implementation are part of this release. 

3.9 Security and Data Protection Layer 
As discussed in Section 3.1, the purpose of this layer is not to realize typical cross-cutting security 

mechanisms, which will be subject to the security discussion in Section 7. 

Currently, ongoing work details the design of this layer. Neither the design of the specific components 

nor the realization are part of this release. 

3.10 Reusable Intelligent Services Layer 
On top of the layers discussed before, the Reusable Intelligent Services Layer provides AI mechanisms 

in reusable and configurable manner and integrates received/monitored data with additional 

information such as product order information or floor plans to provide further valuable input to the 

AI. A particular aim is an AI toolkit facilitating the definition and composition of relevant, configurable 

AI-services for the IIP-Ecosphere platform. 

Besides the platform overview in [27], ongoing work and discussion with project partners and other 

projects aim at collecting the state of the art/practice as fundamental input to the design of this layer. 

Similarly, work on the data integration is ongoing, but not included in this release. 

3.11 Configuration Layer 
It is important to recall that all relevant static and runtime information shall be reflected in terms of 

IVML structures, relations and constraints, while the IVML validation reasoner validates the platform 

configuration before and at runtime by identifying problems and deviations from validation rules and 

expected information. The Configuration Layer provides functionality to define applications in terms 

of the platform IVML configuration on top of the (reusable) services, to dynamically and adaptively 

optimize the deployment of services and containers and to adapt the use of services at runtime. 

Table 14 summarizes all requirements from [8] regarding the configuration. The use of the 

configuration for resource optimization or adaptation is not listed in Table 14. In this release, we focus 

on the Configuration component (responsible for the configuration modelling and the instantiation) of 

the Configuration layer. Optimized container deployment and adaptive operations are deferred to 

future releases. 
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Table 14: Specific requirements for the configuration (in addition to the general requirements in Table 2, Table 3) 

Requirement Summary 

R8 SPL approaches shall be used for variant management. 

R8a The platform must contain an integrated configuration model for applications, 
services and platform properties. 

R8b Automated validation of the configuration model 

R8c Automated derivation of platform instances 

R12a The platform can automatically derive the documentation of data processing 
methods from the configuration model. 

R17a Connectors shall be described in the configuration model.  

R19f The platform shall provide mechanisms for format adaptation or format 
conversion described in the configuration model. 

R19g The platform shall provide mechanisms for customization or manipulation of 
metadata as specified in the configuration model. 

R20a Data paths/relations must be defined in the configuration model. 

R20b Data paths/relations can have properties/parameters. 

R25c The platform must manage the available resources. 

R31c The required components to be installed into a container must be specified in the 
configuration model. 

R31b Containers can contain optional components. 

R34 The creation of containers by the platform shall be automated, based on the 
settings in the configuration model. 

R34a A model validation can be performed before creation or execution to ensure 
executability. 

R34b The platform can support externally provided containers (e.g., for digital twins). 

R36 The platform shall enable configuration settings for resources (read/write). 

R40a RBAC roles can be specified in the configuration model. 

R40b TLS certificates can be specified in the configuration model. 

R41a Directory services must be configured in the configuration model. 

R42 Further safety mechanisms must be configured uniformly via the configuration 
model. 

R43 Performance targets shall be considered in the configuration model. 

R44 The configuration model shall offer IDS-based connectors as optionally 
configurable. 

R64a The specification of the data fields for anonymization shall be done via the 
configuration model. 

R65a The specification of the data fields for anonymization of personal data shall be 
done via the configuration model. 

R73e The data schema for storage services of structured data shall be defined in the 
configuration model. 

R77a If the platform supports cloud services, the configuration model must offer the use 
of cloud-based storage services as an option. 

R80 Data (including meta-data) shall be described in the configuration model, including 
data protection classes. 

R86 The functionality of the data integration shall be defined by the configuration 
model. 

R89 The platform must allow the data integration write access to data. The data stores 
shall be defined in the configuration model. 

R93 The platform must be systematically configurable in the form of a configuration 
model. 
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R94 The platform must support the automatic validation of the configuration model for 
inconsistencies and errors. 

R94b Validating a configuration model with 50 resources and 5 applications shall be 
completed in less than 1 second. 

R95 The platform must support automatic platform instantiation for a configuration. 

R95a The instantiation of a configuration model with 50 resources and 5 applications 
shall be completed in less than 15 minutes. 

R96 The configuration model must represent optional and alternative platform 
components/services. 

R96a The configuration model must describe properties of the platform 
components/services. 

R97 The configuration model must include the applications running on the platform. 

R97a An application configuration must contain the configured services for the 
application. 

R97b An application configuration must contain the configured connectors for the 
application. 

R97c An application configuration must contain the data paths of the application. 

R97d An application configuration shall contain alternative services. 

R97e The configuration model can allow for application templates. 

R98 The configuration model shall support customizations at different times in the 
software lifecycle. 

R99 Information from the configuration model can be made available to other 
components via internal connectors. 

R100 The configuration model can be a decentralized model. 

R101 Information provided in the AAS of components/services shall be mapped 
automatically into the configuration model. 

R101a The transfer of information for a configuration model with 50 resources and 5 
applications shall be completed in less than 1 second. 

R112a Parameters of the AI services shall be described in the configuration model. 

R112b Properties of the distribution of AI services shall be described in the configuration 
model. 

R112c Distribution shall be subject to restrictions for individual AI services. 

R113a Technical dependencies to AI frameworks shall be specified in the configuration 
model. 

R119b The release of the trained model shall be determined via settings in the 
configuration model. 

R119c The release of the trained model can be automatic (if specified in the configuration 
model). 

R119e Changes initiated by a release of an AI model training shall be reversible, e.g., due 
to configurable criteria. 

R120 The configuration model must describe alternative AI components for an AI 
method. 

R122c The adaptation must store its decisions in the configuration model. 

R131a The configuration model must support the specification of applications, their 
required services, connectors, involved data paths and the needed resources. 

R131b The configuration model must allow for the versioning of applications and services. 

R131c The configuration model can enable the parameterization of applications. 

R131d The configuration model shall support application templates for simplified 
configuration of requirements. 

R131e The configuration model must describe dependent applications or services. 

R131f The configuration of applications and data paths can be done in a graphical way. 



 

 

82 

IIP-Ecosphere Platform Handbook 

Requirement Summary 

R132a The configuration model must support application-specific services. 

R133a The platform must know the status of the services. 

R133b The platform must know the status of the running applications. 

R134b The platform can support the removal of applications from the configuration 
model. 

R135 The platform shall support the update of applications. 

 

Figure 35 illustrates the design of the configuration component. While the diagram (and the 

implementation) may appear rather trivial, most of the complexity is in the configuration model, the 

instantiation process and the underlying framework EASy-Producer. 

As already discussed for Figure 1, the configuration model follows the layered architecture of the 

platform, i.e., each platform layer is represented by a configuration module. Figure 35 just indicates 

the topmost module, named IIPEcosphere, representing the configuration meta-model, i.e., the 

configuration options, their structures as well as constraints permitting certain configurations or 

propagating values among configuration options. We will discuss the model in more details in Section 

6. For each platform to be installed, a dedicated platform configuration is created which specifies the 

AAS settings, the platform data types, the platform services etc. Moreover, for each application a 

separated (imported) configuration module shall be created, which contains the application-specific 

data types, the application-specific services as well as the service meshes (directed data flow graphs 

relating connectors and services) constituting the application. This combined platform configuration is 

one dedicated instance of IIPEcosphere, in Figure 35 an application configuration taken as input 

from the Application Layer is illustrated. 

The platform instantiation process is defined based on IIPEcosphere meta-model, i.e., an instance 

of IIPEcosphere can be used as input that defines how the platform shall be instantiated. The 

platform instantiation process turns the configured information into source code artifacts, setup 

information, deployment descriptors and executable build scripts. This process also significantly 

contributes to the invisible complexity of this component. We will discuss also the instantiation process 

in more details in Section 6. 

 

Figure 35: Configuration and instantiation of Definition of applications and orchestration of services (comments cropped) 

On top of the models and the instantiation process, the Configuration component just orchestrates 

the relevant processes. The ConfigurationSetup (read from a Yaml setup file) defines the file 

system paths where the meta-model, its instance and the instantiation process are defined (meta-
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model and instantiation process are part of the respective release). The ConfigurationManager 

ensures the consistency of the operations, currently of loading, validating and instantiating the model. 

In future releases, also modifications to the actual instance of IIPEcosphere will be provided. These 

operations shall be reflected into the ConfigurationAas so that other components on this layer but 

in particular also a potential user interface can define applications or services and instantiate 

components. For now, the PlatformInstantiator realizes a command line tool to perform the 

basic operations of the ConfigurationManager, i.e., to allow a user to instantiate the platform and 

the defined applications. 

Following the structure of the previous section, we discuss now the implementation of the 

configuration requirements. However, so far we did not detail the structure of the IVML model and 

the capabilities of the instantiation. This information is provided in Section 6, because we focus here 

on the architectural side. To avoid two separate discussions of the realized requirements, Table 15 

includes forward pointers to Section 6 and summarizes already the requirements state explained 

there. 

Table 15: Review of realized68 requirements for the configuration (based on Table 2, Table 3 and Table 14) 

Requirement Summary 

R8 SPL approaches are used for variant management. 

R8a The platform contains an integrated configuration model for applications, services 
and platform properties. 

R8b Automated validation of the configuration model is supported in terms of the 
constraints in the variability model and the EASy-producer IVML reasoner (cf. 
Section 6). 

R8c Automated derivation of platform instances is supported through the instantiation 
process (cf. Section 6). 

R12a Derivation of the documentation of data processing is currently not supported. 

R17a Connectors are part of the configuration model (cf. Section 6).  

R19f Currently no mechanisms for format adaptation or format conversion are described 
in the configuration model. Data serializers are implicitly derived during 
instantiation  (cf. Section 6). 

R19g Currently the configuration model does not support mechanisms for customization 
or manipulation of metadata. 

R20a Data paths/relations are defined in the configuration model in terms of service 
meshes (cf. Section 6). 

R20b Data paths/relations can have properties/parameters although currently only the 
name is specified (cf. Section 6). 

R25c The platform must manage the available resources. Resources are foreseen 
through the conceptual foundation of the meta-model but not used (cf. Section 6). 

R31c The required components to be installed into a container are currently not linked to 
resources. 

R31b Containers can contain optional components. Currently, services and resources are 
not linked. 

R34 The automated creation of containers is not part of this release. 

R34a A model validation is performed before instantiation and through the 
ConfigurationManager can be performed before further platform operations. 

R34b Currently no externally provided containers are supported. 

R36 The platform shall enable configuration settings for resources (read/write). These 
resource configuration settings may be reflected by the device management into 
the configuration. 

R40a RBAC roles are currently not specified in the configuration model. 

R40b TLS certificates are currently not specified in the configuration model. 
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Requirement Summary 

R41a Directory services are currently not part of the configuration model. 

R42 Further safety mechanisms are currently not part of the configuration model. 

R43 Performance targets are currently not part of the configuration model. 

R44 The configuration currently does not offer IDS-based connectors as optionally 
configurable. 

R64a The specification of the data fields for anonymization is currently not supported by 
the configuration model. 

R65a The specification of the data fields for anonymization of personal data is currently 
not supported by configuration model. 

R73e The data schema for storage services of structured data is currently not linked to 
data storages. 

R77a The platform currently does not support cloud services. 

R80 Data (including meta-data) shall be described in the configuration model, including 
data protection classes. Data types are supported, meta data or protection classes 
are currently not part of the configuration model. 

R86 The functionality of the data integration is currently not part of the configuration 
model. 

R89 Currently no data stores are defined in the configuration model. 

R93 The platform is systematically configurable through a configuration model. 

R94 The platform does support the automatic validation of the configuration model. 

R94a Validating a configuration model with 50 resources and 5 applications shall be 
completed in less than 1 second. The models currently do not reach this size, but 
on example configurations validation is currently not a bottleneck. 

R95 The configuration model does support automatic platform instantiation. 

R95a The instantiation of a configuration model with 50 resources and 5 applications 
shall be completed in less than 15 minutes. So far, test configurations up to 3 
applications including all platform components require less than 3 minutes on a 
computer in the same network as the (snapshot) code repository. 

R96 The configuration model includes optional and alternative platform 
components/services  (cf. Section 6). 

R96a The configuration describes properties of the platform components/services (cf. 
Section 6). 

R97 The configuration model defines applications running on the platform (cf. Section 
6). 

R97a An application configuration contains the configured services for the applications  
(cf. Section 6). 

R97b An application configuration contains the configured connectors for an application  
(cf. Section 6). 

R97c An application configuration must contains the data paths/relations of an 
application (cf. Section 6). 

R97d An application configuration does allow for alternative services (via families, cf. 
Section 6). 

R97e The configuration model currently does not allow for application templates. 

R98 The configuration model does allow for customizations at different times in the 
software lifecycle although not all relevant ones are defined (cf. Section 6). 

R99 Information from the configuration model is currently not made available to other 
components via internal connectors. 

R100 The configuration model is currently a centralized model. 

R101 Information provided in the AAS of components/services is currently not mapped 
automatically into the configuration model. 
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Requirement Summary 

R101a The transfer time for a configuration model with 50 resources and 5 applications is 
currently unknown as R101 is not realized. 

R112a Parameters of (AI) services are currently not described in the configuration model. 

R112b Properties of the distribution of AI services shall be described in the configuration 
model. Currently, the configuration contains only the information whether a 
services is distributable. 

R112c Currently no distribution apply. 

R113a Technical dependencies to AI frameworks are currently not part of the 
configuration model. 

R119b The release of a trained model is currently not considered in the configuration 
model. 

R119c The release of the trained model is currently not considered in the configuration 
model. 

R119e Changes initiated by AI model training are currently not subject to configurable 
release or quality criteria. 

R120 The configuration model must describe alternative AI components for an AI 
method. This is realized in conjunction with R97d. 

R122c The adaptation is not part of this release. 

R131a The configuration model supports the specification of applications, their required 
services, connectors and involved data paths. However, currently needed resources 
are not linked to an application/service although the allocation to resources is 
prepared. 

R131b The configuration model allows for the versioning of applications and services. 

R131c The configuration model currently does not enable the parameterization of 
applications/services. 

R131d The configuration model currently does not support application templates for 
simplified configuration of requirements. 

R131e The configuration model currently does not describe dependent applications, but 
service chains in service meshes. 

R131f The configuration of applications and data paths is currently not done in a 
graphical way as no UI is provided. 

R132a The configuration model does support application-specific services. 

R133a The platform must know the status of the services. Currently no runtime data is 
reflected in the configuration. 

R133b The platform must know the status of the running applications. Currently no 
runtime data is reflected in the configuration. 

R134b The platform can support the removal of applications from the configuration 
model. The configuration layer currently does not provide detailed configuration 
manipulation operations. 

R135 The platform shall support the update of applications. The configuration layer 
currently does not provide detailed configuration manipulation operations. 

 

We conclude, that basic requirements for this layer are implemented, in particular also for services 

and applications ([8] only states “the application”). However, there are many (cross-cutting) 

requirements for the configuration in [8] and in several cases the underlying platform components are 

not realized so that configuration modeling for those requirements is useless at the moment. These 

components/requirements are scheduled for future releases. 
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3.12 Application Layer 
Ultimately, the Application Layer represents individual applications, i.e., it is the actual home of the 

application configurations to be installed, the generated artifacts and additional application-specific 

(handcrafted) components and services. The overall picture is depicted in Figure 36.  

Currently, this layer does not really exist as platform instance/application configurations are defined 

as part of the tests of the Configuration Layer or on the command line of the respective tooling. Thus, 

generated and packaged artifacts are currently belonging to the Configuration Component (temporary, 

generated artifacts folder). The setup and the application layer will change in the next releases. 

 

Figure 36: Application Layer (comments cropped) 

3.13 Platform Server(s) 
As discussed above, the IIP-Ecosphere platform consists of several layers and many components. 

However, so far there also is a component that provides the setup and lifecycle mechanisms for the 

central IT-side of the platform, e.g., powering up the platform AAS service. At a glance, this component 

does not provide new functionality or concepts and may not be worth mentioning. In fact, it is a vital 

part for later platform instantiation, as it defines how central services can be configured, instantiate 

and how these services are started. Moreover, it provides an initial simple command line interface to 

operate with the IIP-Ecosphere platform, e.g., to start containers or services. 

Figure 37 depicts the structural design of the platform component through using the server 

implementations and server-related parts defined in all layers and components discussed before. As 

stated above in this chapter, this component serves for two purposes: 

1. Powering up the servers to run the IIP-Ecosphere platform. Therefor, the component defines 

a lifecycle descriptor (PlatformLifecycleDescriptor), which reads information from the 

PlatformConfiguration78 representing the YAML setup file. The lifecycle descriptor is 

loaded via JSL into the LifecycleHandler, which, in turn, is called by the platform 

                                                             
78 Due to terminological alignment with Spring there are currently two kinds of “configuration” in the platform. 
Some classes representing the setup as PlatformConfiguration as well as all components and files related 
to the IVML platform configuration (cf. Section 3.11). We did not resolve these overlapping names in this 
release, but may rename classes like PlatformConfiguration to names like PlatformSetup. 
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component during its main program. During this startup process, all “installed” lifecycle 

descriptors (e.g., the descriptor for the network manager; the platform instantiation is 

responsible for this) are also started up. As part of the startup also the platform AAS is 

constructed, which at least contains the platform “nameplate” (Platform sub-model). 

2. Providing a simple command line interface (Cli) to experience the operations of the IIP-

Ecosphere platform. The command line interface does not rely on the lifecycle mechanism, 

but on the PlatformConfiguration and, in particular, on the AAS clients of the service and 

the resources layer to ease executing the operations defined there. Figure 38 illustrates an 

example interaction with the interactive mode of the command line interface, here turning 

into the resources commands, showing the commands for resources (help), listing the 

available resources and, finally, ending the client. For the single resource shown in Figure 38, 

in particular the integrated container manager (for Docker) and various initial runtime 

measurements for disk and memory allocation are shown. It is important to emphasize that 

the command line performs its operations via the platform AAS and the respective AAS clients 

for services and the ECS runtime. 

 

Figure 37: Platform server(s) component 
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IIP-Ecosphere, interactive platform command line 
AAS server: http://127.0.0.1:9001 
AAS registry: http://127.0.0.1:9002/registry 
Type "help" for help. 
> resources 
resources> help 
  list 
  help 
  back 
resources> list 
- Resource a005056C00008 
  systemdisktotal: 1023887356 
  systemmemorytotal: 2147483647 
  simplemeterlist: ["system.cpu.count","system.cpu.usage", 
    "system.disk.free", "system.memory.free"…] 
  containerSystemName: Docker 
  systemmemoryfree: 2147483647 
  systemdiskfree: 464061712 
  systemmemoryused: 2147483647 
  systemdiskusable: 464061712 
  systemmemoryusage: 0.5555296172875698 
  systemdiskused: 559825644 
resources> back 
> exit 

Figure 38: Interaction with the preliminary interactive platform command line interface. 

Using the platform command line interface, we validated the interaction among the components. 

Therefore, we started platform, ECS runtime and service manager component as individual programs. 

Through the command line interface, we validated the resource represented by the ECS runtime and 

started a simple generated application (cf. Section 6). We identified here the following issues: 

• Unfortunately, BaSyx issues exceptions when checking whether an AAS exists through 

accessing it.  

• Long running commands such as starting services are currently rather quiet on the command 

line interface, i.e., they do not show intermediary steps while the logs on the respective device 

indicate the actual state. AAS do not support return streams, so either polling from the caller 

or transmitting the results via the Transport Layer could be options for improvement.  

We also validated the execution of services in a service manager container, starting and stopping of 

containers via the platform and the ECS runtime execution in terms of a (Docker-out-of-Docker) 

container. Please refer to Section 8.4 on how to install, instantiate and containerize the IIP-Ecosphere 

platform, i.e., to perform the steps that we also executed for validating the command line interface 

and the instantiated platform components. 
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4 Architectural Constraints 
Besides structure and communication sequences, often an architecture explicitly or implicitly defines 

constraints that must be obeyed by an implementation. We summarize and explain the constraints for 

the IIP-Ecosphere platform here: 

C1. Higher layers and contained components are allowed to have dependencies only to 

downstream layers and components, if possible only to the directly adjacent lower layer. This 

constraint is induced by the basic layered architecture style of the IIP-Ecosphere platform.  

C2. As an exception from C1, the ECS runtime shall not depend on the Services Layer so that the 

services layer can be installed separately (as explained in Section 3). Both, Services Layer and 

ECS runtime may depend on certain classes of the services environment. 

C3. Wrapped singleton components or libraries shall not be called by other components than the 

wrapper itself. Basically, this applies to transport and connector protocols, the AAS 

implementation (BaSyx), but also for container management libraries such as Docker. This 

constraint intentionally focuses on singleton components/libraries, as some libraries may 

occur in multiple component dependencies, e.g., the stream processing framework due to the 

need for different protocol/binder implementations. In turn, this also applies to some 

transport/connector protocol client implementations. Another exception is 

support.aas.basyx.server, which is allowed to access (as the only component) 

support.aas.basyx as it represents the server component with full dependencies. 

C4. Support components for C3 shall be realized as optional components, e.g., the Spring service 

environment refining the generic Java environment. There shall be no references into such 

components except for refining components. In particular, generic components shall not 

reference their specialized components. For providing access to the specialized 

implementation, descriptors, factories or facades are to be used where the implementation is 

provided by JSL. 

C5. Protocol servers for testing such as Apache Qpid, HiveMq or Moquette shall be in testing 

components and no other component shall directly use classes from them (although Maven 

requires explicitly naming also those transitive dependencies). 

It would be desirable to check and enforce these dependencies. However, so far tools that we tried, 

e.g., in the continuous integration, failed for multiple components using a central or even adequately 

distributed rule set as they require an application rather than a component to be checked. We will try 

to find and integrate a feasible tool as soon as possible.  
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5 Asset Administration Shells 
As stated above, the IIP-Ecosphere platform heavily relies on asset administration shells (AAS) to 

describe the capabilities and interfaces of its components. Currently, only few standard structures for 

AAS/sub-models exist while many are still in development, e.g., a software type-plate or a description 

of qualities of service (QoS). However, it is not feasible for the work on the IIP-Ecosphere platform to 

wait until such standards are defined. Thus, we follow an agile and pragmatic approach to AAS 

modeling here: 

1. As long as no guidelines for AAS in IIP-Ecosphere exist, the IIP-Ecosphere platform will draft 

AAS that contain the most relevant information for its operation, i.e., for now the IIP-

Ecosphere platform relies on AAS prototypes. All names and sub-structures shall be defined 

in terms of constants so that names and structures can be adapted (within limits). AAS of the 

IIP-Ecosphere platform shall be tested individually and also in integration settings to handle 

and to judge the impact of modifications. Tests shall also rely on the defined constants rather 

than on local String literals. In this stage, we pragmatically focus on AAS describing instances. 

2. Discussions with third parties on (proto-)standardized AAS structures are ongoing. As soon as 

results from these discussions are available, a guideline for AAS modeling in IIP-Ecosphere 

shall be drafted. The experience made with prototyping AAS in the IIP-Ecosphere platform will 

be considered in these guidelines. At this point, also type AAS shall be provided. 

3. The IIP-Ecosphere platform will modify the AAS prototypes and augment the information (e.g. 

eclass references) to comply with the guidelines. This may lead to a re-structuring of the AAS 

prototypes.  

With this approach in mind, we designed and partially realized the prototypical IIP-Ecosphere AAS 

structure shown in Figure 39. The layers and their main components are represented by individual sub-

models, e.g., transport, connectors (in terms of installedConnectors and 

activeConnectors), services (in terms of installedServices and activeServices), but also 

the applications and the resources (hosting ECS runtime instances). In addition, platform is a simple 

variant of a software nameplate for the whole platform (or the running top-level component) including 

build information. The types sub-model represents types that are used in the communication, e.g., 

in/output types of connectors (each equipped with respective generated serializers).  

We distinguish between installed/available descriptors and their active instances at runtime, in 

particular as in many cases only the active instances provide the full information about in/outgoing 

types. Examples are in particular the connectors, the services and their relations, the containers etc. 

These structures are dynamic, i.e., they change due to installed components as well as due to 

instantiated/terminated instances. This is in particular the case for connectors and services, 

subsequently also for applications. Some sub-models are active, in particular those providing 

operations. One example for an active AAS is the optional netMgt submodel, which provides access 

to the local/global NetworkManagement defined in the Support Layer. 

It is important to emphasize that the structure shown here is not static. It is dynamic in its elements as 

explained above, but it is also dynamic in its overall structure and contributions, in particular if the AAS 

is centrally deployed and parts are added remotely. A specific example is the relation between 

resources and services. When an ECS runtime comes up, it contributes itself to the resources collection. 

When a service manager starts, it contributes further operations to the resource it is running on, i.e., 

both Layers contribute into the same AAS sub-model (elements collection), because in this case the 

components have information and operations that they only can share individually but that are part of 

the same topic, namely the runtime interface of a resource. 
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Figure 39: AAS structure of the IIP-Ecosphere platform (preliminary, incomplete) 
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As the IIP-Ecosphere AAS is rather dynamic, we can already draw some conclusions on lessons learned 

with BaSyx (based on the integrated version through the support layer): 

• Remotely deployed AAS with operations and properties realized in terms of attached functors 

typically require uniquely serializable functor objects, i.e., they do not work with simple 

lambda functors or serializable lambda functors. 

• When obtaining a remotely deployed AAS, the AAS is turned into a serialized format as already 

briefly mentioned in Section 3.7.3, i.e., all functors such as getters, setters or operations are 

serialized, to obtain the values of the properties the getters are even executed. If getters are 

bound to an AAS implementation server, that server must be ready to serve connections at the 

point in time when the remote AAS is requested (which may happen in parallel initiated by 

other components) and currently for each property a network connection is created by the 

respective BaSyx connector and the value is requested. This seriously affects the performance 

of obtaining and using a remote AAS. It happened to us that in such a situation a potentially 

endless loop occurred forcing us to re-think a rather obvious implementation approach in 

terms of getter functors. As discussed in Section 3.7.3, we suggest using functors that map to 

local data rather than to remote data. The local data object may be updated in parallel through 

a different process, e.g., a Transport Layer connector. Dependent on the implementation, each 

serialized AAS then has its own remote data object, leading to a distributed setup of AAS that 

can be kept up to date via Transport Layer mechanisms. Directly writing values into an AAS 

might be an alternative, but in the remote deployment case, the serialized AAS implicitly 

performs update requests on the original remote AAS, i.e., probably leading to reduced 

performance. 

• When writing larger portions of structured data, in particular binary data, there is a conversion 

problem in the BaSyx version that we are using. Types like Base64Binary are not handled 

correctly. Currently, we encode such data through a Base64 String encoder. 

• The IIP-Ecosphere abstraction appears to be easier to use and requires less code than plain 

BaSyx [2], but this was a design goal. Moreover, the AAS implementation can be replaced 

seamlessly, also by a non-AAS interface realization. 
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6 Platform Configuration Model 
This section provides an overview on the IVML configuration model and the concepts used to model 

configuration options for the IIP-Ecosphere platform. In essence, the configuration model mirrors the 

component hierarchy of IIP-Ecosphere and describes per component the configurable elements, their 

dependencies and constraints. IVML is the Integrated Variability Modeling Language [7] as realized by 

the EASy-Producer toolset [31]. The configuration model consists of three parts: 

1. The configuration meta-model introducing the configurable elements, their structure, 

relations, properties and where adequate also consistency constraints. 

2. A platform configuration based on the configuration model describing the configuration of a 

certain platform installation. Platform-specific structures (like services, service dependencies 

and service relations to form an application), but also the specific selection of alternative 

components, e.g., various transport protocols, service execution environments, container 

managers, are defined in the platform configuration. A platform configuration may introduce 

further, application/installation specific constraints. 

3. A valid platform configuration complies with the configuration meta-model and fulfills all 

constraints. Such a valid platform configuration can be instantiated through an instantiation 

model, consisting of an instantiation process description (VIL, variability implementation 

language) and, where adequate, artifact instantiation templates (VTL, variability template 

language) [9]. In IIP-Ecosphere, both languages are used to instantiate a platform 

configuration into code and build specification artifacts, to execute and to package the 

created artifacts. 

4. VIL and VTL can be used at runtime to adapt the underlying system [5]. These capabilities will 

be used in the last project year to allow for self-adaptation of the IIP-Ecosphere platform. 

The configuration model is taken up by the configuration component (Section 3.11) and used for 

platform instantiation and runtime adaptation. The configuration component allows for high-level 

model operations. 

As illustrated in Figure 40, the configuration meta-model reflects the layers and components of the IIP-

Ecosphere platform, each given in terms of an IVML project. The most basic project (MetaConcepts) 

introduces even more abstract, i.e., meta-meta, concepts for generic adaptive software systems. These 

concepts are refined into IIP-Ecosphere specific concepts in the remaining models. The first IIP-

Ecosphere specific model describes the DataTypes used in the platform, in particular 

PrimitiveType and RecordType consisting of files of DataType instances. Some specific primitive 

types are defined in this model and frozen79 already on that level. The remaining levels will be 

described as soon as they are realized. 

The platform instantiation takes up the data types and turns them into language-specific artifacts, e.g., 

Java or Python classes. Similarly, corresponding serialization mechanisms to be used with the 

Transport component are generated. So far, there are no basic settings for the Connectors. 

  

                                                             
79 Frozen elements cannot be modified outside the defining IVML project. Only frozen elements can be 
instantiated before runtime, while the remaining elements may be frozen later or remain changeable for 
runtime adaptation. The MetaConcepts model defines mechanisms to conditionally control the freezing and 
also the CReversibleProperty, which explicitly re-defines its value to remain unfrozen. 
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Figure 40: Structure of the IVML IIP-Ecosphere platform metamodel (in development). 
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On the service level, several refinements of the IIP-Ecosphere service term are defined as configurable 

elements. The ServiceBase is abstract and contains information common to all services, e.g., name, 

id, version, description, input types, output types, service kind or operation mode 

(synchronous/asynchronous). Already the ServiceBase defines constraints prescribing which 

information must be present for which kind of service. Although we might use the service kind as 

hierarchy discriminator here, we opted for building a hierarchy along the implementation levels rather 

than the service kinds, as service kind differences can easily be handled by constraints while the 

implementation type is more important for the subsequent code generation. A Service is a 

refinement of ServiceBase and also the parent of language specific services like JavaService (e.g., 

detailed by a Java qualified class name denoting the implementation) or PythonService. A special 

kind of Service is a machine/platform Connector, representing the specific connectors implemented in 

the Connector component (only OPC-UA is shown here, similar elements exist for AAS, MQTTv3, 

MQTTv5 and AMQP). A ServiceFamily represents multiple, alternative but functionally equivalent 

services with the same input/output types. Service families steer the selection of alternative services 

at runtime. Although strange at a glance, a ServiceFamily (representing a concrete selection of one 

out of many services) is defined as a kind of service (it inherits from ServiceBase). This allows to 

transparently use a ServiceFamily wherever a Service can be used. From the configured services, 

the code generation derives implementation interfaces (Java, Python) and service stubs (Java) for the 

integration of non-Java service implementations. 

The Devices module defines the properties of the ECS runtime, in particular the container manager 

to use. Moreover, it defines the EcsDevice, which represents an installed/connected device. In the 

next release we plan that EcsDevice instances steer the automated creation of Docker containers as 

well as the automated and optimized assignment of containers to resources. 

The Applications module introduces one or multiple applications consisting of one or multiple 

ServiceMesh instances. A ServiceMesh is a directed graph rooted by sources, linked by 

connectors/relations possibly leading to sinks. Each node in such a graph has an implementation in 

terms of a ServiceBase. Service properties are pulled up during model validation and allow for 

checking whether a service graph is valid (through correctly sequenced input/output types of the 

services). During code generation, individual applications or alternatively all applications are 

processed, i.e., the service meshes are traversed and stream engine glue code for each node is 

generated. In the default case, Java classes with Spring Cloud Stream annotations are created and 

bound to the respective service interfaces. Based on the given implementation class names, the 

implementing services are dynamically instantiated, mapped into the respective AAS (via the 

ServiceMapper from the service environment) and made available for monitoring and management. 

Besides code artifacts also build specifications (Maven), assembly specifications, Spring application 

specifications, deployment descriptors, logging setting files, JSL specifications and, partially, test 

classes (for validating generated Yaml files) are created automatically. For the three major platform 

components, the platform AAS server (based on the platform component discussed in Section 3.13, 

currently without further services), the ECS runtime and the service manager, the basic AAS settings 

as well as further settings are instantiated into respective Yaml application specification. Finally, the 

generated build specifications are executed so that for a complete instantiation, three platform 

artifacts and one combined Java/Python artifact per application is generated. 

We do not provide a more detailed discussion of the concepts in the meta-model or the instantiation 

process at this point in time because both models are still in development and usually it is not expected 

that users of the platform modify the models. However, as long as there is no user interface, a user 

must be able to describe a platform configuration in order to perform an instantiation. Therefore, we 

briefly provide an insight into a simple testing model. 
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project SimpleMesh { 
 
    import IIPEcosphere; 
 
    // binding annotation omitted 
 
    // ------------ component setup ------------------ 
 
    serializer = Serializer::Json; 
    // serviceManager, containerManager are already defined     
         
    aasServer = { 
        schema = AasSchema::HTTP, 
        port = 9001, 
        host = "127.0.0.1" 
    }; 
 
    // ... 
 
    // ------------ data types ------------------ 
     
    RecordType rec1 = { 
        name = "Rec1", 
        fields = { 
            Field { 
                name = "intField", 
                type = refBy(IntegerType) 
            }, Field { 
                name = "stringField", 
                type = refBy(StringType) 
            } 
        } 
    }; 
 
    // ... 
 
    // ------------ individual, reusable services ------------------ 
         
    Service mySourceService = JavaService { 
        id = "SimpleSource", 
        name = "Simple Data Source", 
        description = "", 
        ver = "0.1.0", 
        deployable = true, 
        asynchronous = true, 
        class =  
          "de.iip_ecosphere.platform.test.apps.serviceImpl.SimpleSourceImpl", 
        artifact = "de.iip-ecosphere.platform:apps.ServiceImpl:" + iipVer, 
        kind = ServiceKind::SOURCE_SERVICE, 
        output = {{type=refBy(rec1)}} 
    }; 
     

Figure 41: First part of a simple platform configuration. 
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Figure 41 depicts the first part of a simple platform configuration used for testing. A model is defined 

in terms of IVML, a textual DSL for variability modeling. Each model is surrounded by a project 

namespace, here named SimpleMesh. Within that namespace, first model imports are stated, here 

an import of the IIP-Ecospere configuration meta-model (IIPEcosphere). After this header, the first 

configuration value definitions are stated, typically as value assignments to typed variables (a typed 

variable indicates a configuration option in IVML). Typed variables can form complex types that we call 

compounds in IVML. Here, the serializer is defined to be Json, an enumeration literal for serializers 

defined in the meta-model.  Then the global aasServer receives its schema, port number and host 

name (similarly but not shown for AAS registry and local AAS implementation server). Next, we define 

the application datatypes, typically records.  

While the variables discussed before are pre-defined by the meta-model, the data type is now given in 

terms of an own variable named rec1 of type RecordType (defined in the meta-model as a 

compound, not illustrated here). A record has a name (turned e.g., into a Java class name during 

instantiation) and field, each with a name and a type. Types are references (stated by refBy), i.e., we 

define a link to an already defined variable, here the pre-defined Integer and String type. 

Following the definition oft he variable rec1, we then introduce a Java service, a hand-crafted data 

source (for testing, it will create arbitrary data of type rec1). The source is described by its 

identification, its name, an empty description, a version, whether it is deployable, whether it is a 

synchronous or asynchronous service and its implementation class located in the given Maven artifact. 

Please note that we use here the implementation version of the platform defined by the meta-model 

in the variable iipVer. The service is a source service (one of the four main service kinds) and its 

output is constituted by one record, namely rec1. In fact, multiple types can be given, all in terms of 

a structured type currently just having a type field (to be extended later), therefore the double 

brackets, the outer one for a collection instance, the inner one for the structure type. 

    // ------------ application and service nets ------------------ 
     
    Application myApp = { 
        id = "SimpleMeshApp", 
        name = "Simple Mesh Testing App", 
        ver = "0.1.0", 
        description = "", 
        services = {refBy(myMesh)}         
    }; 
     
    ServiceMesh myMesh = { 
        description = "initial service net", 
        sources = {refBy(mySource)} 
    }; 
     
    MeshSource mySource = { 
        impl = refBy(mySourceService), 
        next = {refBy(myConnMySourceMyReceiver)} 
    }; 
     
    MeshConnector myConnMySourceMyReceiver = { 
        name = "Source->Receiver", 
        next = refBy(myReceiver) 
    }; 
 
    MeshSink myReceiver = { 
        impl = refBy(myReceiverService) 
    }; 

Figure 42: Second part of the simple platform configuration. 
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The second part of the example in Figure 42 defines an application with a simple service mesh. First an 

application is defined, again with identification, name, version and empty description. Then the service 

meshes are stated, here a single reference to myMesh. myMesh potentially consists of multiple sources, 

we just have mySource as source mesh element. mySource uses the previously defined 

mySourceService as implementation, as well as the next mesh element in terms of a mesh 

connector/relation. A synchronous source may also define a polling interval. Currently, mesh 

connectors have just a name but further properties may follow (otherwise we could directly reference 

mesh elements among each other). The mesh connector links further to the receiver, which states its 

implementation as myReceiverService (similar to mySourceService but not shown here). 

    freeze { 
        aasServer; 
        serializer; 
        // ... 
        .;  
    }; 
 
} 

Figure 43: Final part of the simple platform configuration. 

The final part is important for the instantiation. For various reasons, variable values defined in IVML 

are not per se considered final, rather they can be overwritten in importing modules/project. Turning 

such a configuration into code is problematic, in particular if code parts are deleted based on non-final 

decision (deleted parts are usually deleted). Thus, IVML has the notion of freezing variables. Frozen 

variables are considered final and can be instantiated safely. Figure 43 illustrates the freezing of this 

model. Within the freeze block, first variables from the meta-model that have been configured are 

listed for freezing. Finally, every variable declared in this project (shortcut “.” like in a command shell) 

is frozen. Typically in systems with dynamic instantiation at runtime, freezing is conditional, i.e., stated 

variables are filtered according to a given condition. In the original model used for testing, this 

condition is based on the so-called binding time, the latest time when a decision must be made (here 

compile time). As we just aimed at explaining how a platform configuration looks like, we intentionally 

left out the required attachment of binding times at the beginning of the model and the freeze 

condition here. Ultimately, Figure 43 ends with the closing bracket for the namespace of the 

SimpleMesh project. 

Although the configuration shown here looks pretty structural and might be represented in any other 

nested configuration language, we did not detail the validation constraints that are imposed by the 

meta-model, e.g., that services are configured correctly and services meshes fit together. For now, the 

constraint setup is initial and several constraints are currently missing. However, the already defined 

constraints can quickly lead to validation errors issued by the EASy-Producer reasoner. This validation 

is important, as an invalid model typically leads to invalid artifacts that, e.g., cannot be compiled. Work 

is still needed here to make the validation messages more domain-specific and user friendly. 

In summary, the code generation based on the IIP-Ecosphere configuration model creates 8 different 

types of artifacts (Maven XML, assembly XML, Java source, Python source, application Yaml, logging 

XML, Java test code, windows batch/linux shell startup scripts), which leads to different types of 

artifact structures, e.g., various forms of Java code. The number of generated artifacts varies with the 

number of services/mesh elements defined per application/platform configuration. 
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7 Platform Security and Data Protection 
In this section, we discuss means to ensure the security and the data protection in the IIP-Ecosphere 

platform. We start with (cross-cutting) internal security and security analysis in Section 7.1 and 

external sercurity measures in 7.2. 

7.1 Internal Security and Security/Privacy Analysis 
One main step before managing security and offering security enhanced services is to review where in 

fact security is needed. Moreover, concerning the General Data Protection Regulation (GDPR), security 

and privacy aspects must be considered as early as possible in the design and development of a system 

(privacy and security by design principles). Architectural models, in fact, offer an excellent possibility 

to support the realization of privacy and security by design principles.  

In Section 3.4.2 we introduced a UML profile called UMLsec. We further introduced two privacy checks 

secure links and secure dependency. Such checks provide a possibility to perform security and privacy 

checks on the design (architecture) of a platform provided using UML models. 

 

 

 

 

Figure 44: Architecture model for edge deployment annotated with secure links stereotypes (excerpt of Figure 34). 
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The process of checking and enhancing an architecture model is the topic of our ongoing research. In 

this section we describe how we can analyze the architecture of the IIP-Ecosphere data platform using 

CARiSMA. 

In Section 3.4.2.1, we saw that the secure links annotation enables one to ensure the security of 

communications in a physical layer. The following model is annotated with stereotypes relevant to 

secure links (Figure 44). 

The link between the node Loaded c750 Edge and the node Broker in this figure is annotated with 

the Lan stereotype. The stereotypes as shown in the lower side of the figure can be set in properties 

view. In Figure 16 we saw that a default adversary cannot delete, read or insert on a link annotated 

with the Lan stereotype. Furthermore, the dependency between the two artifacts deployed on these 

two nodes namely, BrokerServer and PartialApplicationContainer is high (as indicated by 

the «high» annotation), requiring that the adversary cannot read, delete or insert on the link. 

Concerning the fact that the link is annotated with the Lan stereotype, after performing an analysis 

the check should not show any problems. This is in fact true, shown in Figure 45 which demonstrate 

the results of the analysis.  

 

Figure 45: The CARiSMA analysis result. 

Assuming that the link between the two nodes is annotated with the «internet» stereotype, and 

concerning the fact that the default adversary can read, insert and delete on the communication link, 

the corresponding error is shown in Figure 46.  

 

Figure 46: The result of the CARiSMA analysis. 
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If the communication path “Path-Broker-Loadedc750Edge” is annotated with the stereotype 

«Encrypted» and concerning the fact that a default adversary can only delete a message on an 

encrypted path, the corresponding error after performing a CARiSMA analysis is shown in Figure 47. 

Such errors identified in the result of a CARiSMA analysis can inform a security expert or a system 

designer about potential threat and risks in a system in the very early phases of system design. 

Therefore, such an analysis facilitates the process of enhancing an architectural model with 

appropriate security and privacy mechanisms. 

 

Figure 47: The result of the CARiSMA analysis. 

7.2 External Security 
For communicating with other platforms or other instances of the IIP-Ecosphere platform, external 

communication is required. In particular, external communication requires a certain level of security. 

Currently, two approaches are intended to support such external communication: 

• Concepts and components of the International Data Spaces (IDS) that will partly be integrated 

into the GAIA-X initiative. We will discuss the plans for IDS support in one of the next versions 

of this document. 

• An alternative, more lightweight approach is to transparently encrypt all communication 

between two parties linked via the internet. KIPROTECT has demonstrated such an approach 

in terms of the EPS-System (End Point Server, Figure 48 and Figure 49), which is already being 

used to secure data transfers between German health departments and contact tracing 

providers. In particular, it is easy to install, offers end to end encryption and mutual 

authentication via mTLS and supports encapsulation of arbitrary application-layer protocols 

like MQTT or REST interfaces. As BaSyx AAS are realized via REST, the partners believe that a 

transparent communication between two parties to their internal IIP-Ecosphere platform AAS 

via the EPS-System is possible. Moreover, the EPS-System supports role-based access 

management that can restrict access to specific services and methods based on group 

memberships as well as additional criteria, so that the platform communication can be 

provided in a selective manner to actors in the ecosystem. Further, we believe that an EPS 

instance could also server as protection mechanism for the platform AAS towards an 

(internal/external) user interface or other platform layers. Providing an additional level of 

authentication and access control via the EPS system on top of the existing ones implemented 

on the AAS level via BaSyx can be part of a good “defense in depth” strategy. 
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Figure 48: Direct communication between organizations through the EPS system 

 

Figure 49: Indirect, proxy-based (end-to-end encrypted) communication between organizations through the EPS system. 
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8 Implementation 
In this section, we briefly discuss aspects of the implementation of the IIP-Ecosphere platform, i.e., 

decisions we made during the implementation (Section 8.1), how to obtain a binary version (Section 

8.2), the dependencies and how to compile the sources (Section 8.3), and how to install and to use the 

platform (Section 8.4). Section 9 on how-to’s will take up some of the topics, but more from the 

perspective on how to extend or interact more deeply with the platform (code). Intentionally, we do 

not discuss code here. For this purpose, we refer the reader to the IIP-Ecosphere Github repository17 

and in particular the Markdown80 readme files that are provided for the platform and for individual 

components. 

8.1 Implementation decisions 
We briefly discuss now technical decisions or issues that occurred during the development of the IIP-

Ecosphere platform. This list may not be complete81 and is subject to incremental extension: 

• As more parts and pieces show up, e.g., AAS sub-models, the more decisions on the startup 

process of the platform have to be made. However, some of these decisions impact testing, as 

a full startup including AAS sub-models is not always desired or may even break tests. In these 

cases, it is possible to mock out the AasFactory or to create missing server instances for the 

platform AAS via the AasPartRegistry, both located in the Support Layer (Section 3.5).  

• Akin, many components make assumptions on default instances for alternative components 

in testing. Typically, we use AMQP as testing protocol (the server is rather easy to use, runs 

with JDK 1.8 and the implementation is stable) as well as BaSyx as AAS implementation. It is 

important to clearly distinguish these dependencies from production code, i.e., they must be 

part of the testing scope as otherwise they may accidentally become part of the instantiated 

platform components and clash with the decisions made in the platform configuration. 

• BaSyx and Spring use different versions of the expression language javax.el.el-api, 

which, when utilized together on the same classpath, prevent Spring Cloud Stream from 

starting. Wherever possible in installation packages, we try to separate AAS and stream 

processing, i.e., stream processing components shall run in their own JVMs controlled by a 

supervisor JVM containing the ECS runtime, which also maintains the representing AAS of the 

installation part. For uniform technical configuration, it is desirable that the ECS runtime is also 

started as a Spring application, while use of Spring Cloud Stream shall be prevented in there. 

• Different external components depend on Google Guava in several versions. As a Guava 

version below 22 prevents some protocol test cases to be executed, we decided to fix Google 

Guava to version 22 in the platform dependency management. Similarly, further components 

may be fixed to rather narrow version ranges in the managed platform dependencies (and 

transitively in components such as EASy-Producer). 

• So far, we use org.slf4j for logging, as this library is also used by BaSyx and Spring (although 

in different versions). Logging setup (also called configuration) is typically added during 

platform instantiation or for testing, also to avoid conflicting setups. 

• We added a simple resilience mechanism for failing connections to AAS implementation 

servers. In the version of BaSyx that we are using, implementations of operations, property 

getters or setters are attached through functors (usually lambda functions) to the AAS. In such 

a functor, currently the preferred style seems to be to create one connector instance per 

operation or property call, which builds up a network connection to an AAS implementation 

                                                             
80 https://de.wikipedia.org/wiki/Markdown  
81 We do not intend to repeat all coding conventions for the platform in this document. We just listed here the 
most important ones with their rationales as overview. For details, please refer to https://github.com/iip-
ecosphere/platform/blob/main/platform/documentation/README.md  

https://de.wikipedia.org/wiki/Markdown
https://github.com/iip-ecosphere/platform/blob/main/platform/documentation/README.md
https://github.com/iip-ecosphere/platform/blob/main/platform/documentation/README.md
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server. If the connection fails, e.g., because the AAS implementation server was intentionally 

shut down, let’s say when stopping a service through the service manager, the AAS will 

continue connecting unsuccessfully to that AAS implementation server. At a glance, this only 

is an issue if the operation or property is addressed. However, in the BaSyx version used in this 

release, each access to a remotely deployed AAS causes an execution of all these functors 

(probably to serialize and transport the respective “value”), leading in some cases to 

(seemingly) endless trials to connect to the intentionally closed server. Although we delete the 

respective operation/property from the AAS before shutting down the service or the 

respective AAS implementation server, respectively, the described behavior occurs. As a 

mitigation and a first step towards connection resilience, the functors attaced by the AAS 

abstraction for BaSyx track erroneous connections for all connector instances and return a 

constant value on failures. As this decision is intentionally global for all connector instances, 

we also have to revert the decision if the server becomes available again or the same address 

is used in another context. Currently, erroneous connections are disabled by default for a time 

period of one minute. Later versions of the platform shall integrate this behavior with the port 

release of the network manager or with a connection trial after a given timeout. 

8.2 Obtaining the IIP-Ecosphere platform 
The sources of the IIP Ecosphere platform are available on Github82. Released binaries of the IIP-

Ecosphere platform can be obtained from Maven Central83. Snapshots from the continuous integration 

can be obtained from the SSE Maven repository84.  

However, it is important to keep in mind that the IIP-Ecosphere platform consists of several alternative 

or optional components that must be consistently configured to obtain a valid installation for a certain 

setting. We will discuss in Section 8.4 how to utilize the configuration approach to obtain the binaries. 

Below, we summarize the (optional/alternative) components, the respective location of the 

configuration settings and the JSL descriptors that can be used to provide extensions. Table 16 

summarizes the settings and the provided descriptors. 

Table 16: Configuration and extension mechanisms used in the IIP-Ecosphere platform components (for descriptors, we 
abbreviate “de.iip_ecosphere.platform” by “d.i.p” for formatting reasons) 

Layer/ 
Component 

Settings Provided JSL descriptors 

Support - d.i.p.support.LifecycleDescriptor 
d.i.p.support.aas.AasFactoryDescriptor 
d.i.p.support.aas.ProtocolDescriptor 
d.i.p.support.net.NetworkManagerDescriptor 
d.i.p.support.iip_aas.AasContributor 
d.i.p.support.aas.AasServerRecipeDescriptor 

Transport -  d.i.p.transport. TransportFactoryDescriptor 

Connectors - d.i.p.connectors.ConnectorDescriptor 

Services iipecosphere.yml d.i.p.services.ServiceFactoryDescriptor 

Resources / 
Monitoring 

iipecosphere.yml d.i.p.ecsRuntime.EcsFactoryDescriptor 

Configuration iipecosphere.yml - 

Platform iipecosphere.yml - 

 

                                                             
82 https://github.com/iip-ecosphere/platform/ 
83 https://repo1.maven.org/maven2/de/iip-ecosphere/platform/  
84 https://projects.sse.uni-hildesheim.de/qm/maven/de/iip-ecosphere/platform/  

https://github.com/iip-ecosphere/platform/
https://repo1.maven.org/maven2/de/iip-ecosphere/platform/
https://projects.sse.uni-hildesheim.de/qm/maven/de/iip-ecosphere/platform/
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The Support Component does not take specific settings into account rather being set up through upper 

platform layers/components. In contrast, the Support component defines several fundamental JSL 

descriptors to allow the upstream platform components to hook into at defined points or to allow for 

external extensions. We summarize the descriptors now and link them to the variability provided by 

the platform and the platform configuration approach. The descriptors are: 

• LifecycleDescriptor with allows adding components to the startup/shutdown process of 

a platform component. These descriptors can indicate a certain startup level and they even 

can cause a shutdown of a platform component. Adding certain descriptors to a platform 

binary causes the respective components to be started. Upper platform components ship with 

their descriptor file (in META-INF/services) so that either we add a certain component or 

a descriptor to the instantiated platform binaries (positive variability) becomes then active. In 

seldom cases, we may add the component and remove the descriptor to disable the respective 

registration (negative variability). 

• AasFactoryDescriptor indicating the AAS factory to be used. A specific descriptor is 

shipped with the AAS (abstraction) implementation. The default implementation is 

support.aas.basyx. The platform just takes the first available descriptor (excluding 

potential descriptors used in testing), allowing here only for a single choice variability. By 

including a certain AAS implementation component, i.e., adding it to the platform classpath, 

the descriptor is made available and the respective factory becomes active (positive variability) 

as done during platform instantiation. 

• ProtocolDescriptor is an optional extension descriptor indicating AAS implementation 

protocols that are not shipped with the platform. By default, TCP and HTTP/REST protocols for 

the BaSyx Virtual Automation Bus are provided, but other protocols may be desired in a certain 

installation. Here, additional external components can add arbitrary protocols (positive, 

unlimited variability) as long as the protocol names are unique. New protocols must be added 

to the configuration model as potential alternative so that the selected/desired protocol can 

be specified while instantiating the settings of the upper components. 

• NetworkManagerDescriptor is an optional descriptor that indicates which network 

manager shall be used by a component. The Support component does not ship with any 

descriptor information so that the platform instantiation must provide respective files (in 

META-INF/services). One alternative to the local manager is a global AAS-based network 

manager for some ports backed by a local network manager. 

• AasContributor is an extension descriptor for higher level platform components to 

conveniently build a common AAS for the platform. AAS contributors define specific sub-

models and announce their presence through the AasContributor descriptor, i.e., any 

descriptor found will be used to set up the common AAS for the platform. Examples in the 

Support Component are the platform “nameplate” sub-model and the network manager AAS 

(providing access to the network manager selected by the NetworkManagerDescriptor). 

Although the descriptors shipped with the platform are intended to be executed, the platform 

instantiation may add or remove specific contributors to customize the AAS of a certain 

component. Moreover, the descriptors can declare themselves as invalid as, e.g., instances 

required to implement the AAS are not present. 

• AasServerRecipeDescriptor defines the specific recipe to be used when creating an AAS 

server. The AAS abstraction defines a local server recipe for in-memory storage. However, on 

a server sided installation, also a persistent storage of the AAS may be required, which can 

lead to a large set of dependencies and unnecessary allocation of resources on edge devices. 

The required behavior, storage options but also dependencies can be defined by a specific AAS 

server component. 
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The Transport Component in the Transport and Connectors layer does not define own settings. This is 

done by the TransportFactoryDescriptor to allow concrete transport protocol implementations 

to hook themselves into the TransportFactory. Moreover, it offers adding serializer 

implementations to the SerializerRegistry. For a concrete application, the respective serializers 

are created during platform instantiation and registered through generated code in the 

SerializerRegistry. 

The Connectors Component in the Transport and Connectors layer defines the 

ConnectorDescriptor for announcing available descriptors that can be used / shown up in the AAS 

sub-model of the Connectors Component. 

The Services Component takes setup information from a unified YAML file called iipecosphere.yml, 

which must be present on the classpath of the component85. This file is instantiated through the 

configuration model during platform instantiation and added to the respective instantiated 

components. Depending on the service manager to be used, specific setup information may be 

required, e.g., for Spring Cloud Streams the full breath of the used Spring Components can be 

configured in this file86). Moreover, the Services component defines the 

ServiceFactoryDescriptor that announces the actual ServiceManager to be used. 

Similarly, the ECS Runtime Component in the Resources and Monitoring Layer utilizes own entries in 

its iipecosphere.yml file and provides an own descriptor (EcsFactoryDescriptor) to announce 

the configured container manager. 

In the Configuration Layer, the Configuration Component considers specific settings in its 

iipecosphere.yml file, e.g., where to find the configuration meta-model, the platform 

configuration, where to write instantiated components to etc. As the configuration component will 

offer own operations to modify the configuration, it also utilizes the descriptors defined by other 

components/layers, e.g., the AasContributor, to hook itself into the platform mechanism to create 

a joint platform AAS. 

The Platform Component is a collection of the basic services to be started, in particular a (persistent) 

AAS server or a global network manager. Thus, it requires specific setup information in its 

iipecosphere.yml, e.g., on which port and using which implementation protocol the global 

platform AAS shall be set up (the individual AAS are then remotely deployed into this AAS server).  

Besides the services and their technical network addresses, the platform also uses some pre-defined 

Transport Layer channels. These channels are briefly summarized in Table 17. It is important that 

channels are independent of the transport protocol, i.e., apply equally to, e.g., MQTT or AMQP. 

Moreover, the default metrics channels currently use a fixed JSON format and rely on a default String 

serializer defined in the Transport Layer. The service channels use an application-specific format 

determined by the active serializer and the code generation of the platform instantiation process. 

  

                                                             
85 The detailed settings are documented in the README.MD file of the respective components. 
86 In Spring applications, this file is typically called application.yml. The name for the IIP-Ecosphere 
platform is different, also as Spring is only used in alternative components. 
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Table 17: Transport Channels used by the platform 

Channel Kind Component Format Explanation 

EcsMetrics global ECS Runtime JSON Metrics reporting by ECS Runtime 

ServiceMetrics global  Service Mgt., 
Service Env. 

JSON Metrics reporting by Services, can 
be augmented by application-
specific metrics. 

<service>_<function> global Application application 
specific 

Inter-device transport channels per 
service and function87. 

<service>_<function> local Application application 
specific 

Intra-device transport channels per 
service and function87. 

8.3 Compiling the IIP-Ecosphere platform 
Due to the various optional and alternative components in the IIP-Ecosphere platform that we manage 

in individual artifacts/Eclipse projects, compiling the IIP-Ecosphere platform is not trivial. As mentioned 

above, for the project the SSE Continuous Integration (CI) server as shown in Figure 50, knows about 

all the build dependencies among the components and builds the parts and pieces along the 

dependency tree when the code of a single component changes. As part of building, it executes the 

respective component tests, assembles the documentation and, if successful, deploys the respective 

snapshots to the SSE Maven repository or the stable releases from Maven (or related repositories). 

 

Figure 50: Screenshot of the SSE Continuous Integration server (IIP-Ecosphere view, cropped) 

For completeness, we discuss below the dependencies among the individual components of the IIP-

Ecosphere platform (as illustrated in Figure 51). The platformDependencies project collects the 

dependency information of (optional or required) external components that are used by at least one 

component and do not constitute singleton wrapped components (cf. Section 4). In other words, the 

platformDependencies project defines the managed dependencies of the platform with their 

respective version number (range) but without actually using them. The dependent components rely 

on this information and just state the required components without replicating their version numbers 

(Maven parent POM mechanism). As we usually do not build external components, e.g., protocols, 

rather than relying on available release binaries, these dependencies are out of scope. 

                                                             
87 An application identifier will be added in one of the next releases. 
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Figure 51: Dependencies among the components (folder names in github) 

The Support Component (support.aas) is the most basic IIP-Ecosphere component without further 

dependencies to the platform. The BaSyx default implementation and the iip-aas support functions 

depend directly on support.aas and are build when support.aas changes. 

While all platform components receive their dependencies from Maven central as managed 

dependencies, the BaSyx library (and the dependent support.aas.basyx) is an exception, because 

BaSyx has so far not been deployed as versioned binary component. Moreover, the Github 

development of BaSyx is done without release tags, i.e., so far there are no release versions of BaSyx. 

To rely on a safe version that is common for the development in IIP-Ecosphere, we decided to take a 

feasible snapshot of BaSyx (January 2020), to build that snapshot with the SSE CI server and to deploy 

that version to the SSE Maven repository88. If the partners decide about a new stable version of BaSyx 

(based on successful tests against the Support Layer), we will manually trigger the build process of 

BaSyx, which then will trigger the build process of directly dependent components such as 

connectors.basyx. 

                                                             
88 For releases, BaSyx is included with group id de.iip-ecosphere.platform.org.eclipse.basyx. 
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The Transport Component (transport) is then the next component to be built after the Support 

Layer. If transport is changed, it triggers the building of the transport connectors (transport.*), 

the basic (optional) Spring integration (transport.spring) and the Spring binders 

(transport.spring.*) utilizing the transport connectors. The Connectors Component 

(connectors) relies on the type translation and serialization mechanisms of the Transport 

Component and, further, the individual platform/machine connectors (connectors.*) depend on 

the Connectors Component. The MQTT platform/machine connectors are, in turn, based on the 

corresponding transport connectors.  

The components of the service layer (services.*) consist of the service manager interface including 

the abstract creation of the AAS (services), the specific implementation for Spring Cloud Streams 

(services.spring) as well as the generic service environment (services.environment) and the 

Spring-specific service environment (services.environment.spring). 

The resource/deployment components (ecsRuntime.*) are partially realized, e.g., the ECS runtime 

and the container manager for Docker. The container manager for Kubernetes, the device 

management and the platform monitoring are in planning/realization and not part of this release. 

The platform server(s) component provides the startup sequence for central services as well as the 

preliminary command line interface for platform functionality.  

At the end of the hierarchy, there is currently the integration of the configuration model 

(configuration.configuration), which depends on the capabilities of EASy-Producer (stand-

alone, Maven-based integration). EASy-Producer in terms of a standalone library can be executed by 

Java 8, however, also here test dependencies force partially an execution with Java 11. Fortunately, 

the configuration component of the IIP-Ecosphere platform only utilizes parts that require Java 8. 

The Test Components (test.*) are a side track but required for testing. The protocol related test 

components contain integrations of embedded protocol brokers, such as Apache Qpid, HiveMq or 

Moquette, which shall be explicit testing dependencies rather than part of the production code. 

Moreover, test.simpleStream.spring is a testing artifact containing a simple stream processor 

chain for testing the Spring service manager in the Services Layer. Further, 

test.configuration.configuration provides implementations for the streaming interfaces 

created by the Test configuration instantiations in configuration.configuration. This 

introduces cyclic dependencies, but only for the very first build. For such a build, the configured 

artifacts in the respective tests can be set to an empty string, the test passes, creates and deploys the 

interfaces and the test artifacts can be build and deployed. In a second round, the artifact configuration 

is restored and the test runs again, now correctly packaging the streaming artifacts. 

Figure 51 also indicates the actual state of using JDK 1.8 in the platform. There are some MQTT protocol 

components that require JDK 11, but only in testing. This also applies to connectors.mqttv3, which 

can be tested properly with HiveMq, but unfortunately not with Moquette. As soon as we become 

aware of more stable embeddable MQTT brokers for JDK 1.8, we will replace the dependencies to the 

test servers and switch the CI for those components to JDK 1.8. 

8.4 Installing and using the IIP-Ecosphere platform 
As discussed above, the IIP-Ecosphere platform must be configured and instantiated before it can be 

executed. Thus, the continuous integration does not provide complete platform dependencies (except 

for those created as part of testing configuration.configuration). Below are the required steps 

to run the actual release of the IIP-Ecosphere platform (this will change in the future). 

1. Prepare the operating system. For the next steps in this section, we assume a Ubuntu 20.4.1 

Linux installed on two machines (assuming 147.172.178.145 as “server” and 147.172.178.143 
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as “device”, we will adjust the IP addresses in the fourth step). Install unzip, Java JDK89 and 

maven (version 3.6.3), docker (version 20.10.2): 

On devices, the installation may differ as Java/Maven could be part of the container hosting 

the ECS runtime or the Service Manger/Services. By default, Docker requires root permissions 

to execute functions. If you want to use docker as “normal” user90, execute 

Log out and log back so that your group membership is re-evaluated. 

2. Obtain the IIP-Ecosphere platform install package, for snapshots from SSE Jenkins for 

Windows91, Linux92 or from github93 for the actual release from github94. 

3. Unpack the install package. Obtain and install the IIP-Ecosphere platform dependencies first. 

This must be done once before other Maven installation steps. 

4. Install a broker. The decision for the broker will influence the configuration changes in step 6. 

By default, the installation package ships with a basic setup of the AMQP broker Apache Qpid. 

To obtain that broker, execute 

  

                                                             
89 A JDK is needed for the platform instantiation rather than a JRE. As also discussed in Section 2, for devices a 
restriction to Java 8 may apply. You may install JDK 13 on the „server“ and JDK 8 on the „device“ or in 
respective containers. If your installation does not set the JAVA_HOME variable, the Maven scripts created 
during platform installation may issue a stacktrace warning that Javadoc cannot be executed, but the scripts 
shall pass. To prevent this, set JAVA_HOME so that it points to the JDK installation home directory. 
90 https://docs.docker.com/engine/install/linux-postinstall/  
91 https://jenkins-2.sse.uni-hildesheim.de/view/IIP-
Ecosphere/job/IIP_Install/lastSuccessfulBuild/artifact/install.zip  
92 https://jenkins-2.sse.uni-hildesheim.de/view/IIP-
Ecosphere/job/IIP_Install/lastSuccessfulBuild/artifact/install.tar.gz  
93 https://downgit.github.io/#/home?url=https://github.com/iip-
ecosphere/platform/tree/main/platform/tools/Install 
94 https://downgit.github.io/#/home?url=https://github.com/iip-
ecosphere/platform/tree/v0.2.0/platform/tools/Install 

sudo apt install unzip 

sudo apt install openjdk-13-jdk-headless 
sudo apt install maven 

sudo apt install docker.io 

unzip Install.zip 

cd Install/platformDependencies 

mvn install 

cd .. 

cd broker 
mvn package 

cd .. 

sudo usermod -aG docker $USER 

https://docs.docker.com/engine/install/linux-postinstall/
https://jenkins-2.sse.uni-hildesheim.de/view/IIP-Ecosphere/job/IIP_Install/lastSuccessfulBuild/artifact/install.zip
https://jenkins-2.sse.uni-hildesheim.de/view/IIP-Ecosphere/job/IIP_Install/lastSuccessfulBuild/artifact/install.zip
https://jenkins-2.sse.uni-hildesheim.de/view/IIP-Ecosphere/job/IIP_Install/lastSuccessfulBuild/artifact/install.tar.gz
https://jenkins-2.sse.uni-hildesheim.de/view/IIP-Ecosphere/job/IIP_Install/lastSuccessfulBuild/artifact/install.tar.gz
https://downgit.github.io/#/home?url=https://github.com/iip-ecosphere/platform/tree/main/platform/tools/Install
https://downgit.github.io/#/home?url=https://github.com/iip-ecosphere/platform/tree/main/platform/tools/Install
https://downgit.github.io/#/home?url=https://github.com/iip-ecosphere/platform/tree/v0.2.0/platform/tools/Install
https://downgit.github.io/#/home?url=https://github.com/iip-ecosphere/platform/tree/v0.2.0/platform/tools/Install
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To run the broker, execute the respective script95 in the broker directory. The broker is 

needed on both, the server and the device installations/containers. On the “server”, the broker 

acts as global platform broker running by default on port 8883. On the “device”, the broker 

acts as broker for local service communication. For installing on a device, copy the respective 

script and the folder brokerJars in broker to the device. 

5. Run Maven96 now on the install package itself  

You may perform install, but package is sufficient here. This step also obtains and unpacks 

the respective platform configuration model into src/main/easy. 

6. Edit the example configuration file TestInstall.ivml in src/main/easy so that your 

local IP address is used. In this release, the devices are not listed in the configuration, i.e., 

search only for 147.172.178.145 and replace this IP by the IP of your “server” machine97. You 

may do more changes, but this requires the background knowledge from Section 6 on the 

platform configuration model. Currently, the selection of code artifacts is restricted to the 

Maven servers used for development, i.e., further artifacts cannot be obtained from further 

repositories, e.g., the future platform service store. This will be targeted by one of the next 

releases. 

7. Instantiate the platform using  

This executes the PlatformInstantiator mentioned in Section 3.11 through maven, 

passing it three parameters, namely the name of the model to instantiate (InstallTest), 

the relative folder where the model is located (src/main/easy) and the folder where to 

store the instantiated artifacts (the relative folder gen). Please note that this may fail if your 

modifications to the configuration file are syntactically or semantically incorrect. Alternatively, 

you can check out the full code from github and run the PlatformInstantiator from your 

IDE or force maven to copy all dependencies into a folder and run Java manually on the 

command line. 

8. Copy the created artifacts in gen (ecsJars/*, ecs.sh, svcJars/*, serviceMgr.sh, 

SimpleMeshTestingApp-0.1.0-SNAPSHOT.jar) to the respective devices. For each 

artifact, the instantiation creates a folder with all dependencies and the respective startup 

script. In future versions of the platform, this step will be taken over by the device 

management, the automated container creation and the distribution of containers by the 

platform. 

9. Install and start a protocol broker/server instance complying with the configuration settings. 

Just as a reminder, the IIP-Ecosphere platform does not ship with a particular broker, e.g., for 

MQTT or AMQP although the regression tests utilize specific brokers as discussed e.g., in 

Section 8.3. 

10. Start the platform components, first the platform server(s) component, then the ECS runtime 

and, finally, the service manager through the startup scripts.  

                                                             
95 So far, scripts are not shipped with file attributes, i.e., on Linux you may have to execute chmod u+x file. 
As an example, we provide a script to set the execution permissions of all files. 
96 The Maven commands are suitable for the first or a release version installation. If you use an actual 
snapshot, i.e., a version that was created and deployed as part of the development process and want to force 
Maven to use the most recent versions (by default, snapshots are updated only once a day), than add -U to the 
respective command, e.g., mvn -U package. During instatiation, the instantiation process takes care of 
snapshot updates. 
97 For this release we suggest not using HTTPS as schema or a non-empty endpoint path for the AAS server. 
Also for VAB, HTTPS is currently disabled. We plan to add certificate support in one of the next releases.  

mvn exec:java -Dexec.args="InstallTest src/main/easy gen" 

mvn package 
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11. Run cli.sh. For deploying services, the created application artifact must be on the device 

running the service manager. Add the artifact to the service manager via the cli (through a 

local file URL on that device) and start the services. Please note that artifacts and containers 

are added through their URI, whereby local URIs may differ from system to system, e.g.,  

• Windows: file:///C:/.../SimpleMeshTestingApp.jar 

• Linux: file:/home/ecouser/SimpleMeshTestingApp.jar 

• Service container: file:/apps/SimpleMeshTestingApp.jar  

12. To avoid timeouts, a shutdown shall happen in the opposite sequence, i.e., services, service 

manager, container manager, platform, brokers.  

If you want to exercise the full cycle, create a Docker container with the service manager and the 

application artifact first and copy the container to the device running the ECS runtime98. It is important 

to emphasize that these steps shall be automated in future releases.  

Copy the container folder from the installation package to your “device”. Copy/move the artifacts 

from step 8 also into the container folder and execute there 

For convenience, both commands are available as createAppContainer.sh and 

saveAppContainer.sh in the install package. At a glance, the second step may appear superfluous, 

but it is required for the deployment and execution of the container through the ECS runtime. Please 

take care that the tag iip/simplemesh and the file name simplemesh-0.1.tar.gz are the same99 

as in the container descriptor SimpleMeshTestingApp/image-info.yml. Add and start the 

container (similar as described for the services above) through the platform command line interface 

before starting the services in the container.  

With a running platform server and a running ECS runtime, you may also start the container manually. 

This would then require setting the AAS implementation server port correctly as stated in the container 

descriptor, i.e., --network=host --expose port -e “IIP_PORT=port”. If feasible, you may 

use the default port 9000 and use --expose 9000 or more generically -P as parameters. An example 

script is included in the install package as runAppContainer.sh. 

If you also want to containerize the ECS runtime (one of the possible edge device installations), ensure 

that the folder container/EcsRuntime is on the “device”. For simplicity and to save resources, we 

map the SimpleMeshTestingApp folder as volume into the ECS container (mount point 

/SimpleMeshTestingApp).  

Akin to the app container, both steps are available as respective scripts in the install package. Before 

running the ECS container, it is important that the the app container has been created and stored. As 

administrative operations for installing Docker into the container are executed, Docker may issue 

certain warnings during the creation of the container. The default port for the ECS Runtime AAS 

implementation server in this Dockerfile is 9000. 

                                                             
98 We provide scripts for creating, saving and running the container as part of the install package. 
99 The version number may differ but shall be the same as in the container descriptor. 

docker build -t iip/simplemesh:0.1 -f SimpleMeshTestingApp/Dockerfile . 

docker save iip/simplemesh:0.1 | gzip >  

  SimpleMeshTestingApp/simplemesh-0.1.tar.gz 

docker build -t iip/ecsruntime:0.2 -f EcsRuntime/Dockerfile . 

docker run -v /var/run/docker.sock:/var/run/docker.sock -P --network=host  

  --mount type=bind,source="$(pwd)"/SimpleMeshTestingApp,target=/SimpleMeshTestingApp 
  -it iip/ecsruntime:0.2 
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9 How to apply, extend or contribute 
In this section, we summarize procedures for some tasks that you may want to perform with the IIP-

Ecosphere platform. In the last sub-section (Section 9.3), we provide answers to frequently asked 

questions. 

9.1 Defining an own application-specific service 
1. Adjust your platform configuration97 and define a new service (as discussed in Section 6). Don’t 

define an implementing artifact. Change the name of the application artifact to avoid 

overriding an existing artifact. 

2. Execute the platform instantiation once so that the service interfaces are build. As part of that 

execution, your application artifact is created and deployed, in particular also a sub-artifact 

just containing the interfaces is created. 

3. Create a Maven Eclipse project, use the IIP-Ecosphere platform dependencies as parent and 

add only required components as dependencies, in particular your configured application 

artifact (see step 1, use interfaces as type in the Maven dependency). Alternative and 

optional components such as AAS implementations or protocols may be added as 

dependencies in the test scope. 

4. Realize the service, e.g., as Java class(es) implementing the new interface(s). We do not discuss 

Python-based services in this release as the service environment is still in development. 

5. Modify the platform configuration by adding the artifact specification of your service 

implementation artifact to the configuration of your service(s). 

6. Run the platform instantiation again so that the complete artifact is built. 

7. Copy the artifacts to your installation devices, start the platform and try out your service as 

discussed in Section 8.4. 

8. Let IIP-Ecosphere know about your work. In case of a potential open source component, please 

consider contributing it to IIP-Ecosphere. 

9.2 Extending the platform by adding a component or a platform service 
1. Make yourself familiar with the design of the respective component. Identify the interfaces to 

implement, e.g., the Service interface in services.environment. 

2. Create a Maven Eclipse project, use the IIP-Ecosphere platform dependencies as parent and 

add only required components as dependencies. Alternative and optional components such as 

AAS implementations or protocols may be added as dependencies in the test scope, not in the 

(default) production scope. 

3. Implement your component and test it. 

4. Consider extending the platform configuration meta-model, i.e., search for the part describing 

the components. In some cases, e.g., AAS protocols, this may just be an additional entry in an 

enumeration. For other components, this may require a new typed IVML compound with 

default values (akin to the already given compounds). For services, no changes to the meta-

model are required. 

5. Adjust your platform configuration97 so that your new entry is taken up. In case of a new enum 

value, use that value. In case of a new compound, replace the existing compound value by a 

value of your type (providing also the respective settings in the compound value). For a new 

service, add the service to the application part of your platform configuration and link it into 

the service mesh (as discussed in Section 6). 

6. Run the platform instantiation as discussed in Section 8.4, copy the artifacts to your installation 

devices, start the platform and try out your extension. 

7. Let IIP-Ecosphere know about your work. In case of a potential open source component, please 

consider contributing it to IIP-Ecosphere. 
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9.3 Frequently Asked Questions (FAQ) 
In this section, we summarize some questions and issues that repeatedly occurred.  

9.3.1 Error parsing HTTP header 
Symptom: A part of the platform (platform server, ECS runtime, service manager or platform command 

line interface) issues an exception with the following message: 

org.apache.coyote.http11.AbstractHttp11Processor.process Error parsing HTTP 

request header Note: further occurrences of HTTP header parsing errors will 

be logged at DEBUG level. 

Reason: One reason may be that a client such as the command line interface tries to access a platform 

server (AAS server, registry) with an encrypted protocol (HTTPS) while the server is running a non-

encrypted protocol (HTTP).  

Solution: Ensure that the certificates for client and server side match. For this release, do not run the 

platform with an encrypting protocol97. 

9.3.2 Maven artifact missing 
Symptom: While working with the platform against a release version in Maven, it appears that one of 

the (non-java) artifacts is missing. 

Reason: Although we carefully check the artifacts before a release, it may be the case that the 

automatic deployment (script) missed some. 

Solution: Please let us know about the problem via the IIP-Ecosphere website or via github.  

9.3.3 Platform code cannot be setup in Eclipse, e.g., parent POM missing 
Symptom: Your IDE reports missing Maven artifacts and shows compilation errors, in particular the 

parent POM of the platform is missing. Similarly, the code style checking may fail due to missing style 

definition file. 

Reason: The parent POM of the platform defines the versions of non-singleton/wrapped libraries (cf. 

Section 4). Without that particular POM, compilation cannot run successfully as the artifact version 

numbers/ranges are missing. If you are working with a release version, it may also be the case that one 

of the released artifacts is missing (cf. Section 9.3.2). 

Solution: Please refer to the code setup guide in Github100. 

9.3.4 Unknown platform coding conventions 
Symptom: After a first contact with the platform code it seems that you are missing detailed 

information about applied conventions on how to write code and you cannot find all conventions in 

this document. 

Reason: Although we tried to capture the most important conventions in this document, this 

document is not intended to be a programmer’s guide, i.e., we do not necessarily repeat all coding 

conventions here. 

Solution: Please refer to the platform coding guidelines in Github81.  

                                                             
100 https://github.com/iip-ecosphere/platform/blob/main/platform/documentation/Guideline.pdf?raw=true  

https://github.com/iip-ecosphere/platform/blob/main/platform/documentation/Guideline.pdf?raw=true
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10 Summary & Conclusions 
Realizing an open (experimental) IIoT/I4.0 platform is a significant amount of work. IIP-Ecosphere is 

performing that work and this whitepaper provides technical insights into the ideas, concepts, 

rationales, designs and implementation state of the current release of the IIP-Ecosphere platform. The 

rationale behind this document is to enable interested parties to discuss with IIP-Ecosphere on a 

technical level, to try out the platform or to provide extensions. As the platform is evolving, this 

document is just a snapshot in time. Moreover, particularly this version of the document is the first of 

its kind – future versions may learn from feedback in order to improve the platform and also this 

document. 

We discussed the technical basis for architecture modeling, the overview of the layered architecture, 

the individual layers and the components they contain. For each component, we provided a 

requirements analysis [based on [8, 30]) and a discussion of the realized requirements. We discussed 

architectural constraints, the actual use of Asset Administration Shells (AAS), the approach to platform 

configuration and instantiation, future contributions to the (external) security of the platform, selected 

implementation details as well as how-to’s on applying and extending the platform.  

In order to conclude about the actual state of the realization, we provide below some insights into 

selected realization Key Performance Indicators (KPI), namely requirements fulfillment, connectors, 

developed components, testing, use of open source components, and use of Asset Administration 

Shells. 

Table 18 summarizes the discussed and realized requirements. The platform handbook of the current 

version discussed more than half of the top-level and sub-requirements for the platform. As several 

components are not yet realized or in realization but not part of this release, i.e., for which we do not 

discuss the requirements (status), we can also conclude that about a third of the requirements are 

already either completely or partially realized (and tested). 

Table 18: KPI-based summary of discussed/realized requirements 

KPI: Requirements (from [8], 141 top-level and 181 sub-requirements) 

Discussed top-level requirements 78 (55% of all top-level requirements) 

Discussed sub-requirements 93 (51% of all sub-requirements) 

Completely realized top-level 
requirements 

37 (26% of all top-level requirements) 

Completely realized sub-
requirements 

47 (26% of all sub-requirements) 

Partially realized top-level 
requirements 

5 (4% of all top-level requirements) 

Partially realized sub-requirements 12 (7% of all sub-requirements) 

 

Table 19 summarizes the number of “connectors” realized so far. In particular, various basic protocol 

connectors for transport and streaming have been realized and tested. For some components, even 

more connectors do exist, e.g., for Spring Cloud Stream. 

  



 

 

116 

IIP-Ecosphere Platform Handbook 

Table 19: KPI-based summary of realized connectors 

KPI: Connectors (*requiring application-specific extensions) 

Support Layer AAS connector 1 factory connector for BaSyx 

Spring transport connectors 8 binders: RabbitMQ, Kafka, Kafka Streams, Amazon Kinesis, 
Google PubSub, Solace PubSub+, Azure Event Hubs, Apache 
RocketMQ 

IIP-Ecosphere transport 
connectors* 

3 connectors: MQTT v3, MQTT v5, AMQP 
5 connector binders: MQTT v3 (Paho, Hive), MQTT v5 (Paho, 
Hive), AMQP 

Machine/plattform connectors* 4 connectors: OPC UA v1, AAS, MQTT v3, MQTT v5 

Sum 13 connectors realized, 8 further available 

Security transport connector extensions for IDS 

Data integration - 

Cloud connectors semantic-based optional cloud connectors (if within 
resources, AWS and Gaia-X) 

Application northbound external platform connectors for data 
exploration and linking of IIP-Ecosphere platform instances 

Compliance AAS connectors for Sennheiser and SAP 

Further planned 7 

 

Table 20 summarizes the number of developed components categorized by the layers or logical 

components. 

Table 20: KPI-based summary of developed components 

KPI: Components developed  

Support Layer 3 (including 1 optional) 

Transport Component 10 (including 8 optional/alternative) 

Connectors Component 5 (including 4 optional/alternative) 

Services Layer 4 (including 2 optional/alternative) 

Resources Layer 3 (including 2 alternative/alternative) 

Configuration Layer 1 

Platform server(s) Component 1 

Sum 27 (including 17 optional/alternative) 

 

Table 21 summarizes the number of test cases realized by the platform. For judging the overall number, 

it is important to recall that the granularity of tests differs significantly, ranging from classical unit tests 

over integration tests up to validation and instantiation of a configuration in a single test. Also the 

number of tests differes, e.g., in the Services Layer, many fine-grained monitoring tests from [2] are 

defined that increase the number significantly. Moreover, the number of test cases is only one side of 

the testing medal. It is also import to consider coverage metrics. The line coverage is typically between 

69% and 89% except for the following: The Spring environment is currently not directly tested rather 

than indirectly via the Spring service testing artifact, the test components that either consist of testing 

code only or define an artifact for component testing, e.g., the service testing artifact, or that are 

currently not part of the release (Kubernetes resource manager, device management, platform 

monitoring). 
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Table 21: KPI-based summary of tests 

KPI: Tests (of various granularity, from unit to integration) 

Support Layer 58 

Transport Component 19 

Connectors Component 11 

Services Layer 119 

Resources Component 7 

Configuration Component 4 + 2 (generated) 

Platform server(s) Component 1 

Sum 221 test cases (including 2 generated cases),  
69%-89% line coverage 

 

Table 22 summarizes the number of open source components used in and integrated into the platform. 

Table 22: KPI-based summary of used open source components 

KPI: Used Open Source Components (only distinct/top-level ones are listed) 

Support / AAS factory connector 1 BaSyx 

Transport component 4 Eclipse Paho, HiveMQ client, Rabbit MQ client, Spring 
Cloud Stream 
3 for testing: Apache Qpid Broker J, Apache HiveMq, 
Googlecode JSON simple, Google protobuf) 

Connectors component 2 Apache Milo (and as above Apache Paho) 
Testing relies on the components mentioned above as well 
as the server implementations provided by the used 
components. 

Services component 2 Micrometer (with Spring Cloud Stream), Spring Cloud 
Stream Local Deployer 

Resources component 2 Docker, Java docker client 

Configuration 1 EASy-Producer 

SUM 11 in production code, 3 only for testing 

Planned: Data Lakes At least one feasible database 

Planned: Security IDS, KI-Protect 

Planned: Installation Broker like Eclipse Mosquitto or RabbitMQ 

Further planned at least 7 

 

We plan to provide a coherent Asset Administration Shell for the platform on each installed device, 

e.g., through the ECS runtime installations. Thus, the number of individual AAS, which differ due to the 

heterogeneity of the devices, depends on the actual on-site installation and probably leads to s+1 

linked AAS with s being the number of devices with ECS runtime installations and the +1 for the central 

platform installation in a factory (assuming a remotely deployed AAS). From a type perspective, this 

leads to two AAS types, one for the ECS installations and one for the central IT installation. Instead of 

accounting for that number, we count the number of sub-models (more precisely sub-model types) 

contributing to the IIP-Ecosphere platform AAS. 
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Table 23: KPI-based summary of realized asset administration shells 

KPI: Asset Administration Shells (here sub-model types) 

Support Layer 1 dynamic sub-model (types) 

Transport Component 1 static sub-model (transport connectors) 

Connectors Component 2 dynamic sub-models (installed connectors, active 
connectors), while the active connectors change dynamically 
at runtime 

Services Component 3 active sub-models (services, artifacts, relations), change 
dynamically at runtime 

Resources Component 2 active sub-models (resources, containers) 

Configuration Component 0 not realized so far 

Platform (via Support Layer) 1 static sub-model (platform nameplate) 

SUM 10 in production code, 3 additional for testing 

Further planned 12 at least one per layer 

 

In summary, the second basis release accompanied by this platform handbook already realizes roughly 

a third of the intended functionality and, thus, provides a good basis for platform research and case 

studies. However, also basic functionality that would be desirable for certain work is still missing. Thus, 

for the next release, we plan in particular for the following missing functionality: 

• Python service environment 

• Automatic creation of containers and their accessibility for devices 

• Optional integration of Kubernetes based on flexible protocols 

• More detailed configuration model with even more code generation 

• Potentially, an initial version of the device management and the platform monitoring 

• Integration of initial security/privacy mechanisms 

• Integration of first services. 

• An initial AAS guideline 

 

  



 

 
 

IIP-Ecosphere Platform Handbook 

119 

11 References 
 

[1]  A. S. Ahmadian, Model-based privacy by design, PhD thesis, University of Koblenz and Landau, 
Germany, 2020. 

[2]  M. G. Casado, Service and device monitoring on devices in IIP-Ecosphere, IT-Studienprojekt, 
Universität Hildesheim, 2021 

[3]  J.-H. Choi, J. Park, H. D. Park, O. Min, DART: Fast and Efficient Distributed Stream Processing 
Framework for Internet of Things, ETRI Journal, 39 (2), pp. 202-211, 2017 

[4]  R. Dautov, S. Distefano, D. Bruneo, F. Longo, G. Merlino, A. Puliafito, Pushing Intelligence to 
the Edge with a Stream Processing Architecture, International Conference on Internet of 
Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, 
Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), pp. 792-799, 2017 

[5] H. Eichelberger, A Matter of the Mix: Integration of Compile and Runtime Variability, 
Workshop on Dynamic Software Product Lines, FAS’16, 2016.  

[6]  H. Eichelberger, C. Qin, K. Schmid, Experiences with the Model-based Generation of Big Data 
Applications, Lecture Notes in Informatics (LNI) - Datenbanksysteme für Business, Technologie 
und Web (BTW '17), S. 49-56, 2017  

[7]  H. Eichelberger, S. El-Sharkawy, C. Kröher, K. Schmid, IVML Language specification, 
http://projects.sse.uni-hildesheim.de/easy/docs-git/docRelease/ivml_spec.pdf  

[8] H. Eichelberger, C. Sauer, A. S. Ahmadian, M. Schicktanz, A. Dewes, G. Palmer, C. Niederée, IIP-
Ecosphere Platform – Requirements (Functional and Quality View), Version 1.0, March 2021, 
IIP-2021/02-en, DOI: 10.5281/zenodo.4485774 

[9] H. Eichelberger, K. Schmid, EASy Variability Instantiation Language: Language Specification, 
http://projects.sse.uni-hildesheim.de/easy/docs-git/docRelease/vil_spec.pdf  

[10]  X. Fu, T. Ghaffar, J. C. Davis, D. Lee, EDGEWISE: A Better Stream Processing Engine for the 
Edge, USENIX Annual Technical Conference, pp. 929-945, 2019 

[11]  E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of Reusable Object-
Oriented Software, Addison-Wesley, 1995  

[12] Ø. Haugen, Common Variability Language (CVL) – OMG Revised Submission, OMG document 
ad/2012-08-05, 2012 

[13]  C. Hochreiner, M. Vögler, P. Waibel, S. Dustdar, VISP: An Ecosystem for Elastic Data Stream 
Processing for the Internet of Things, pp. 19-29, EDOC’16, 2016 

[14]  C. Hochreiner, M. Vögler, S. Schulte, S. Dustdar, Elastic Stream Processing for the Internet of 
Things, CLOUD, 2016 

[15]  J.-H. Hoepman, Privacy design strategies - (Extended Abstract). In ICT Systems Security and 
Privacy Protection - IFIP TC 11 International Conference (SEC’14), pages 446–459, 2014. 

[17] International Data Spaces, IDS reference architecture model version 3.0, 
https://internationaldataspaces.org/ids-ram-3-0/  

[18]  The Industrial Internet Reference Architecture Technical Report, 
https://www.iiconsortium.org/pdf/IIRA-v1.9.pdf 

[19]  J. Jürjens, Secure Systems Development with UML, Springer, 2005 

[20]  H. Koziolek, S. Grüner, J. Rückert, A Comparison of MQTT Brokers for Distributed IoT Edge 
Computing, ECSA, 2020 

  

http://projects.sse.uni-hildesheim.de/easy/docs-git/docRelease/ivml_spec.pdf
http://projects.sse.uni-hildesheim.de/easy/docs-git/docRelease/vil_spec.pdf
https://internationaldataspaces.org/ids-ram-3-0/
https://www.iiconsortium.org/pdf/IIRA-v1.9.pdf


 

 

120 

IIP-Ecosphere Platform Handbook 

[21]  LNI 4.0 Testbed Edge Configuration – Usage View, https://www.plattform-
i40.de/PI40/Redaktion/EN/Downloads/Publikation/LNI4.0-Testbed-Edge-
Configuration_UsageViewEN.pdf 

[22]  N. Martz, J. Warren, Big Data - Principles and best practices of scalable realtime data systems, 
Manning, 2015 

[23]  D. O’Keeffe, T. Salonidis, P. Pietzuch, Frontier: Resilient Edge Processing for the Internet of 
Things, VLDB Endowment, 11 (10), pp. 1178-1191, 2018 

[24] OMG, Unified Modeling Language, Version 2.5.1, https://www.omg.org/spec/UML/About-
UML/  

[25]  Plattform Industrie 4.0, Die Verwaltungsschale im Detail, 2019, https://www.plattform-
i40.de/PI40/Redaktion/DE/Downloads/Publikation/verwaltungsschale-im-detail-
pr%C3%A4sentation.html 

[26]  Reference Architecture Model Industrie 4.0, https://www.plattform-
i40.de/PI40/Redaktion/EN/Downloads/Publikation/rami40-an-introduction.html 

[27] C. Sauer, H. Eichelberger, A. Ahmadian, A. Dewes, J. Jürjens, Aktuelle Industrie 4.0 Plattformen 
– Eine Übersicht, IIP-Ecosphere Whitepaper IIP-2020/001, 2020, DOI: 
10.5281/zenodo.4485756  

[28]  B. Satzger, W. Hummer, P. Leitner, S. Dustdar, Esc: Towards an Elastic Stream Computing 
Platform for the Cloud, IEEE International Conference on Cloud Computing, pp. 348-355, 2011 

[29] M. Staciwa, Experimentelles Container-Deployment auf Industrie 4.0 Geräte, Projektarbeit, Uni 
Hildesheim, 2020 

[30] H. Stichweh, C. Sauer, H. Eichelberger, IIP-Ecosphere Platform Requirements (Usage View), 
Version 1.0, Januar 2021, IIP-2021/001, DOI: 10.5281/zenodo.4485801 

[31] K. Schmid, H. Eichelberger, EASy-Producer: From Product Lines to Variability-rich Software 
Ecosystems, SPLC’ 15, 20215 

[32]  F. van der Linden, K. Schmid, E. Rommes, Software Product Lines in Action - The Best Industrial 
Practice in Product Line Engineering, Springer, 2007 

[33] T. Ziadi, L. Hélouët, J.-M. Jézéquel, Towards a UML profile for Software Product Lines, Intl. 
Workshop on Software Product-Family Engineering, 2003 

 

  

 

 
 
 
 
 
 
   

https://www.plattform-i40.de/PI40/Redaktion/EN/Downloads/Publikation/LNI4.0-Testbed-Edge-Configuration_UsageViewEN.pdf?__blob=publicationFile&v=5
https://www.plattform-i40.de/PI40/Redaktion/EN/Downloads/Publikation/LNI4.0-Testbed-Edge-Configuration_UsageViewEN.pdf?__blob=publicationFile&v=5
https://www.plattform-i40.de/PI40/Redaktion/EN/Downloads/Publikation/LNI4.0-Testbed-Edge-Configuration_UsageViewEN.pdf?__blob=publicationFile&v=5
https://www.omg.org/spec/UML/About-UML/
https://www.omg.org/spec/UML/About-UML/
https://www.plattform-i40.de/PI40/Redaktion/DE/Downloads/Publikation/verwaltungsschale-im-detail-pr%C3%A4sentation.html
https://www.plattform-i40.de/PI40/Redaktion/DE/Downloads/Publikation/verwaltungsschale-im-detail-pr%C3%A4sentation.html
https://www.plattform-i40.de/PI40/Redaktion/DE/Downloads/Publikation/verwaltungsschale-im-detail-pr%C3%A4sentation.html
https://www.plattform-i40.de/PI40/Redaktion/EN/Downloads/Publikation/rami40-an-introduction.html
https://www.plattform-i40.de/PI40/Redaktion/EN/Downloads/Publikation/rami40-an-introduction.html


 

 
 

IIP-Ecosphere Platform Handbook 

121 

Über die Autoren 

 

 

Dr. Holger Eichelberger is deputy head of the Software Systems Engineering 
group at the Institute of Computer Science at the University of Hildesheim. He 
conducts research in the areas of software product lines, model-based 
engineering, performance monitoring, and performance analysis. In particular, 
he is interested in the integration of these areas to create adaptive software 
systems. In IIP-Ecosphere he leads the think tank "Platforms" as well as the AI 
Accelerator. He studied computer science at the University of Würzburg, where 
he received his PhD on the automatic layout of UML diagrams. 

Fotograf: Daniel Kunzfeld 
 

 

 

Dr. Amir Shayan Ahmadian is a postdoctoral researcher at the Faculty of 
Computer Science at the University of Koblenz-Landau. His research interests 
focus on the challenges of designing and implementing secure and privacy-
friendly software systems as well as on the current developments in Industry 
4.0. He studied computer science at the University of Paderborn and received 
his PhD in computer science from the University of Koblenz-Landau. During his 
doctorate, he developed a methodology to operationalize the principle of "data 
protection through technology design". 

 

 

Dr. Andreas Dewes holds a PhD in experimental quantum computing from the 
Sorbonne University of Paris and the French Nuclear Energy Agency (CEA). He 
has founded several software companies and is the CEO of KIProtect GmbH, 
which develops advanced technical software solutions for data protection and 
data security. Within IIP-Ecosphere, KIProtect GmbH is developing a solution for 
the secure and privacy-compliant use of industrial & IoT data together with the 
consortium project partners and associated companies. 

 

  

Marco Ehl is a research associate in the Software Engineering working group 
under the direction of Prof. Dr. Jan Jürjens at the Institute for Software 
Technology at the University of Koblenz-Landau. He researches model-driven 
methods for software development. His focus is on the analysis and 
explainability of automated production systems. He obtained his Master of 
Science degree in computer science at the University of Koblenz-Landau on the 
topic of model-based monitoring of integrated state machines. 

 

Monika Staciwa studies computer science at the University of Hildesheim. In 
IIP-Ecosphere, Monika works in particular on container management, 
(virtualized) asset administration shells, the python service environment and 
(automatic) creation of containers. 



 

 

122 

IIP-Ecosphere Platform Handbook 

 

Miguel Gómez Casado studies computer science at the university of Valladolid. 
During his ERASMUS+ visit at the University of Hildesheim, Miguel worked on 
service monitoring, representing monitoring information in and querying 
monitoring information from asset administration shells. 

 


