Performance Evaluation of BaSyx based Asset Administration Shells
for Industry 4.0 Applications*

Christian Sauer, Holger Eichelberger
{sauer, eichelberger}@sse.uni-hildesheim.de
University of Hildesheim, Hildesheim, Germany

Abstract

The Asset Administration Shell (AAS) is an upcoming
information model standard, which aims at interoper-
able modeling of “assets”, i.e., products, machines,
services or digital twins in IToT/Industry 4.0. Cur-
rently, a number of IToT-platforms use proprietary in-
formation models similar to AAS, but not a common
standard, which affects interoperability.

A key question for a broad uptake is if AAS can
be applied in a performant and scalable manner. In
this paper, we examine this question for the open
source Eclipse BaSyx middleware. To explore capabil-
ities and possible performance limitations, we present
four experiments measuring the performance of ex-
perimental AAS in BaSyx and, within the context set
by our experiments, i.e., 10-1000 AAS instances, can
conclude good scalability.

1 Introduction

In IToT/Industry 4.0 information access and informa-
tion sharing is essential for the efficient coordination
and planning of a production. Especially in IToT-
platforms and the numerous Industry 4.0 applications
within them there is the need to represent any rele-
vant entity in an easily accessible way. Furthermore,
it is important to allow to interact with these entities,
e.g., control a machine in a standardized manner or let
a product proactively determine its production flow.
One approach that can be used for these purposes is
the upcoming Asset Administration Shell (AAS) [6]
standard, which aims at interoperable modeling of In-
dustry 4.0 "assets”, i.e., products or machines. An
AAS is a virtual representation of Industry 4.0 compo-
nents, employing a standardized information model.
In our research we identified a number of commercial
IToT-platforms that already use information models
similar to AAS but do not rely on a common stan-
dard [4], for example Amazon AWS IoT, Bosch IoT
Suite and SAP Leonardo. However, these approaches
are proprietary for each platform and hence are hin-
dering if not outright preventing interoperability out-
side of the respective platform and/or between differ-

*IIP-Ecosphere is partially supported by the German Fed-
eral Ministry of Economic Affairs and Climate Action (BMWK)
under grant 01MK20006D.

ent platforms.

An AAS consists of information on an asset being
structured into it’s properties, and possible operations
it can perform. This information is stored in submod-
els, which can be grouped in collections. A detailed
review of the information model of an AAS is given
in [6]. The information stated in an AAS can further
be linked to external catalogs, such as ECLASS!, us-
ing so-called semanticIDs. AAS can be passive or ac-
tive. A passive AAS only provides the information on
the asset it describes. An active ASS can addition-
ally be used to control an asset. Further, AAS can be
used locally or over a network as network-connected
AAS [1, 6]. Offering access to information and to in-
terfaces to control an asset, AAS can, from a software
perspective, be seen as functional interfaces allowing
for remote access in a transparent way.

One initiative in the sector of Industry 4.0 in Ger-
many is the ”Basissystem Industrie 4.0” (BaSys4)
defining a reference architecture for production sys-
tems?. One realization of the BaSys4 architecture
is the open-source middleware Eclipse BaSyx?, which
enables creating, using and managing AAS [3]. The
structure of various types of submodels is currently in
standardization by the IDTA*, where BaSyx is con-
sidered as a reference implementation and hence of
interest for us. Further AAS realizations do exist,
which are out of scope for this paper. A possible use of
BaSyx-based AAS raises questions of performance and
scalability, especially with the background of the scale
of Industry 4.0 installations and the sometimes lim-
ited capabilities of industrial devices, on which AAS
would operate. Therefore the aim of our work was to
analyze the performance of Basyx-based AAS.

A further motivation is that in the context of the
project ITP-Ecosphere®, we are currently involved in
the development of an open source Al-enabled Indus-
try 4.0 platform. In this platform all resources and
(software) services provide a self-description in terms
of an AAS. We therefore face the question whether it
is beneficial to integrate BaSyx into the platform.

Thttps://eclass.eu/
2https://www.basys40.de/
Shttps://www.eclipse.org/basyx/
4https://industrialdigitaltwin.org/
Shttps://www.iip-ecosphere.eu/

https://eclass.eu/
https://www.basys40.de/
https://www.eclipse.org/basyx/
https://industrialdigitaltwin.org/
https://www.iip-ecosphere.eu/

The rest of this paper is structured as follows: In
Section 2, we present the approach that we used to
evaluate the performance of the BaSyx-based AAS.
Then we discuss the experiments we conducted and
their results in Section 3. In Section 4, we conclude
the paper and give an outlook on future work.

2 Approach

The approach we used to evaluate the performance
of the creation, use and management of BaSyx-based
AAS was as follows: We created 4 experiments, 2 to
evaluate "local” AAS, which are directly accessed, dis-
cerning the use of 1 local AAS versus the use of 100
local AAS and 2 experiments to evaluate ”network-
connected” AAS, which are accessed via a locale net-
work, to avoid fluctuations, using an AAS-Registry,
discerning the use of 1 network-connected AAS ver-
sus the use of 100 network-connected AAS. The exper-
iments aimed to measure the time being used to create
BaSyx-based AAS’ with a varying number of submod-
els, each holding a property (a temperature value from
a ”sensor”). Further, we measured the time to access
the sensor-submodels of the network-connected AAS.
This setup is based on an initial BaSyx example of a
local and a network-connected AAS®, which we mod-
ified to perform our measurements. One particular
modification is the number of AAS/submodels to be
created in order to analyze scalability. In related work
on the use of BaSyx-based AAS, a conceptual view on
the use of BaSyx-based AAS in Industry 4.0 is given
in [5]. An alternative approach of measuring the per-
formance of BaSyx-based AAS is demonstrated in [2].

3 Experiments and Results

We present now the experiment setup and the results’.

Experimental environment: We set up a tech-
nical environment on a standard PC with an Intel(R)
Core(TM) i7-8665U CPU 1.90GHz and 32 GB RAM.
The OS used was Windows 10 Professional. To accom-
modate for possible fluctuations,which usually were
very minor but occasionally significant, each measure-
ment was performed 10 times and the results were av-
eraged. The Software environment that we used was
as follows: We used the Eclipse IDE for Enterprise
Java and Web Developers, version 2022-06 (4.24.0),
Java Development Kit (JDK) version 15, Apache-
Tomcat Server, version 9.0 and the Eclipse BaSyx ver-
sion available on January the 3rd 2022.

Subject and variants: Our experiments aimed
to measure the response time necessary to create
first 1 and then 100 AAS and their subsequent 10
to 1000 sensor-submodels, each holding one property
that stores a temperature as a single value, to investi-
gate the effects of scaling up the AAS use to expected
industrial levels. The four variants of the experiment

Shttps://wiki.eclipse.org/BaSyx_/_Introductory_
Examples
"Code and results: https://zenodo.org/deposit/7180716

were as follows: All four experiments consisted of 11
iterations, starting with 10 sensor-submodels and then
increasing the number of submodels per AAS in ten
iterations to 1000 sensor-submodels. The execution
time for each iteration was measured, based on sys-
tem time at start and end of the experiment, 10 times
and the averaged time for each iteration was used.

e Experiment 1 created 1 local AAS with 10 sensor-
submodels in the first iteration, and then in-
creased the number of submodels to 1000.

e Experiment 2 created 100 local AAS with 10
sensor-submodels each in the first iteration, and
then increased the number of sensor-submodels
to 1000 submodels for each of the 100 AAS.

e Experiment 3 created 1 network-connected AAS
with initially 10 sensor-submodels, and then in-
creased the number of sensor-submodels to 1000.

e Experiment 4 created 100 network-connected
AAS with 10 sensor-submodels each in the first it-
eration, and then increased the number of sensor-
submodels to 1000 submodels for each of the 100
network-connected AAS.

Experimental procedure: The generation of the
AAS’ and their submodels and the accessing of the in-
formation within the submodels was measured using
milliseconds in system time, each experiments’ 11 it-
erations were all repeated 10 times and the measured
times of the iterations were averaged. After each ex-
periment iteration with network-connected AAS the
Apache Tomcat Server was cleaned and restarted.

Results: The following figures show the results of
our experiments with the numbers of submodels in
each iteration as blue bars and the averaged times for
each iteration (in ms) as an orange graph.

e For Experiment 1 (Figure 1) the amount of time
used to generate the one local AAS and subse-
quently increasing numbers of sensor-submodels
almost stayed level, which clearly indicates scal-
ing the number of sensor-submodels for a single
AAS, does not significantly impact performance.

1200
1000

800

-
II|| :
_-llll :

10 100 200 300 400 500 600 700 800 900 1000

IS
=3
=3

N
=3
=3

mNumber of submodels Time in ms (averaged)

Figure 1: Experiment 1, 1 local AAS

e For Experiment 2 (Figure 2) we found that with
100 locale AAS the effort of creating the AAS

https://wiki.eclipse.org/BaSyx_/_Introductory_Examples
https://wiki.eclipse.org/BaSyx_/_Introductory_Examples
https://zenodo.org/deposit/7180716

and their subsequently increasing numbers of
sensor-submodels (up to 1000 sensor-submodels
per AAS, so 100 AAS with 100000 submodels in
total) increased, as expected. The increase for
each iteration is almost linear.

8000
7000
6000

5000

4000
3000
2000
I I 1000
_ n 0

10 100 200 300 400 500 600 700 800 900 1000
ENumber of submodels —Time in ms (averaged)

Figure 2: Experiment 2, 100 local AAS

e Experiment 3 (Figure 3) showed a significant in-
crease in effort when we used network-connected
AAS, compared to the locale AAS we used in Ex-
periment 1. Interestingly, the increase in effort
was more prominent in the lower range of the
number of sensor-submodels being created and
accessed. The increase of effort for more than
400 sensor-submodels became more linear, which
already indicated the linear increase in effort we
observed then in Experiment 4.

7000
6000
5000
4000

3000

2000
I I 1000
- n .
100 200 300 400 500 600 700

10 800 900 1000
mNumber of submodels —Time in ms (averaged)

Figure 3: Experiment 3, 1 network-connected AAS

e For Experiment 4 (Figure 4) we found that
with the 100-fold increase in scale, 100 network-
connected AAS, in comparison to the one
network-connected AAS in Experiment 3 the
scaling of the sensor-submodels in the networked
environment and the reading of data from them
showed a very clear linear increase in effort.

4 Conclusion

We presented a performance and scalability evaluation
of BaSyx-based AAS to estimate potential impacts on
Industry 4.0 applications using them on a larger scale.

Although we ran a limited set of experiments, based
on our results we conclude that the creation and use
of BaSyx-based AAS, passive, as well as active AAS,

90000
80000
70000
60000
50000

40000

30000
20000
I I 10000
- n 0
100 200 300 400 500 600 700

10 800 900 1000

mNumber of submodels —Time in ms (averaged)

Figure 4: Experiment 4, 100 network-connected AAS

is efficient enough to scale well in even larger num-
bers, as shown in Experiment 4, with 100 network-
connected AAS with 1000 submodels each being gen-
erated and the resulting 100000 submodels being read.
We therefore can say that in the context of our ex-
periments the BaSyx-based AAS scaled well with the
A AS-operations we tested. However, we would like to
advice that our experiments were limited. We didn’t
delete AAS and/or submodels, we always performed
the same operations with the AAS’ on a local com-
puter and we didn’t use all of the possible elements in
an AAS, such as using semanticIDs or AAS references.

In future, we plan to further explore the possi-
bilities to evaluate the functionalities and elements
of BaSyx-based AAS, such as the scalability of real-
world AAS implemented with BaSyx, for example the
implementation of AAS currently used in the IIP-
Ecosphere platform, instead of artificial example AAS.

References

[1] N. Chilwant and M. S. Kulkarni. “Open Asset
Administration Shell for Industrial Systems”. In:
Manufacturing Letters 20 (2019), pp. 15-21.

[2] M. G. Casado and H. Eichelberger. “Industry 4.0
Resource Monitoring - Experiences with Microm-
eter and Asset Administration Shells”. In: Sym-
posium on Software Performance. 2021.

[3] S.Kannoth et al. “Enabling SMEs to Industry 4.0
Using the BaSyx Middleware: A Case Study”. In:
European Conference on Software Architecture.
Springer. 2021, pp. 277-294.

[4] C. Sauer et al. Current Industry 4.0 Platforms -
An Overview. doi:10.5281 /zenodo.4485756. 2021.

[5] P. O. Antonino et al. “Continuous engineering
for Industry 4.0 architectures and systems”. In:
Software: Practice and Ezperience 52.10 (2022),
pp. 2241-2262.

[6] S. Bader, E. Barnstedt, and H. B. et al. De-
tails of the Asset Administration Shell. https :
//www.plattform-i40.de/PI40/Redaktion/
DE / Downloads / Publikation / Details _ of _
the_Asset_Administration_Shell_Partl_V3.
html. (Date accessed: 24.08.2022).

https://www.plattform-i40.de/PI40/Redaktion/DE/Downloads/Publikation/Details_of_the_Asset_Administration_Shell_Part1_V3.html
https://www.plattform-i40.de/PI40/Redaktion/DE/Downloads/Publikation/Details_of_the_Asset_Administration_Shell_Part1_V3.html
https://www.plattform-i40.de/PI40/Redaktion/DE/Downloads/Publikation/Details_of_the_Asset_Administration_Shell_Part1_V3.html
https://www.plattform-i40.de/PI40/Redaktion/DE/Downloads/Publikation/Details_of_the_Asset_Administration_Shell_Part1_V3.html
https://www.plattform-i40.de/PI40/Redaktion/DE/Downloads/Publikation/Details_of_the_Asset_Administration_Shell_Part1_V3.html

	Introduction
	Approach
	Experiments and Results
	Conclusion

