
Developing an AI-enabled Industry 4.0 platform - Performance

experiences on deploying AI onto an industrial edge device∗

Holger Eichelberger
eichelberger@sse.uni-hildesheim.de

University of Hildesheim
Software Systems Engineering

Universitätsplatz 1
31141 Hildesheim

Germany

Gregory Palmer
gpalmer@l3s.de

University of Hannover
L3S Research Center

Appelstraße 9a
30617 Hannover

Germany

Claudia Niederée
niederee@l3s.de

University of Hannover
L3S Research Center

Appelstraße 9a
30617 Hannover

Germany

Abstract

Maximizing the benefits of AI for Industry 4.0 is about
more than just developing effective new AI methods.
Of equal importance is the successful integration of AI
into production environments. One open challenge
is the dynamic deployment of AI on industrial edge
devices within close proximity to manufacturing ma-
chines. Our IIP-Ecosphere1 platform was designed
to overcome limitations of existing Industry 4.0 plat-
forms. It supports flexible AI deployment through
employing a highly configurable low-code based ap-
proach, where code for tailored platform components
and applications is generated.

In this paper, we measure the performance of our
platform on an industrial demonstrator and discuss
the impact of deploying AI from a central server to the
edge. As result, AI inference automatically deployed
on an industrial edge is possible, but in our case three
times slower than on a desktop computer, requiring
still more optimizations.

1 Introduction

Artificial intelligence (AI) is one of the main pillars of
Industry 4.0, e.g., to support automated decision mak-
ing processes, such as AI-based quality control [5]. Al-
though many libraries for development are available,
other steps in the data science process for Industry 4.0
are less well supported, in particular the deployment
of AI close to the target machines, e. g., on industrial
edge devices, to avoid latencies.

While several Industry 4.0 software platforms do
exist, e. g., the Siemens MindSphere, they usually fall
short in AI aspects like functional encapsulation, re-
mote deployment, openness and heterogeneous edge
support [7]. In research on IIoT platforms, approaches
typically cover only selected topics, e.g., application of
specific AI methods in [3, 4] or evaluations with micro

∗Supported by the German Ministry of Economics and Cli-
mate Action (BMWK), grants 01MK20006A/D.

1Intelligent Industrial Production Ecosphere,
https://www.iip-ecosphere.de/

computers, e.g., Raspberry Pi [1], rather than indus-
trial devices. With our platform, we follow a radically
different approach. We ease the development of ap-
plications by generating large parts of the code (low
code) including performance probes based on a model-
based configuration. This speeds up development and
creates more robust code. Using this low-code ap-
proach, we realize a flexible and open platform in the
IIP-Ecosphere project that enables easy-to-use AI and
supports relevant industry standards. The main con-
tributions of this paper are (a) a novel dynamic AI
deployment mechanism and (b) a performance char-
acterization for AI deployment on the edge.

As context for this paper, we use the IIP-Ecosphere
platform (Section 2) and a visual quality inspection
use-case (Section 3). We measure the processing time
of the AI when deployed on an edge device (Section
4), observing a performance difference of factor 3. We
conclude with further options for optimization.

ECS-runtime ServiceManager

AAS AAS

Application Services

Broker Platform servicescentral

device

Broker

Figure 1: Platform components for deployment.

2 Platform

The Open Source IIP-Ecosphere platform2 aims at
augmenting existing production environments with
easy-to-use AI services, operating on data transported
through (standardized) protocols. Applications for
the platform are realized in terms of services, which
operate on data streams. In our configuration model,
we link services to applications consisting of data
sources such as protocol connectors, e.g., for OPC
UA or MQTT, data processors and data sinks. Then

2https://github.com/iip-ecosphere

https://www.iip-ecosphere.de/
https://github.com/iip-ecosphere


a model-based process integrates the services to exe-
cutable applications packaged as deployable artifacts.

Our platform can deploy services to (edge) devices -
a demand of our industrial partners. Then, our plat-
form operates in a distributed fashion, where some
components run centrally, while others must be in-
stalled on target devices, e.g., to deploy services.

A central installation (see Figure 1) includes
a global communication Broker and platform ser-
vices. Such services are a monitoring facility (e.g.,
Prometheus) and an information model representing
all devices/services, their runtime properties and op-
erations in terms of an Industry 4.0 Asset Adminis-
tration Shell (AAS) realized using Eclipse BaSyx.

On a device, we need a device abstraction
(ECS-Runtime) and a ServiceManager, offering con-
tainer/service deployment operations and providing
access to the runtime state [6]. A Broker enables local
communication among services running on the same
device. If supported by the device, these components
can be containerized (the dashed box in Figure 1),
easing the installation of services and their technical
dependencies such as Python or TensorFlow (TF).

3 Visual Inspection Use Case

As an initial demonstration and validation of our plat-
form, we realized an AI-based visual quality inspec-
tion application for individualized products3. For a
realistic setting, we use industrial components, such
as a 5 axis Universal Robots UR5e cobot, a Robo-
tiq wrist cam and a Phoenix Contact AXC F 3152, a
combined Programmable Logic Controller (PLC) and
edge device4. A PC serves as central installation and
a tablet presents the application user interface.

As products we are using small aluminum car mod-
els with configurable properties, e.g., wheel color,
number of windows or engravings. A car configura-
tion is captured as an AAS and made available to
the platform/application. Quality inspection is per-
formed based on three position images taken by the
wrist camera mounted on the cobot arm. Based on
the AI results, the quality is measured in two aspects:
a) conformance with production configuration and b)
quality of production (existence of scratches).

A first version of the application imposed several in-
tegration challenges [8], e.g., excessive container sizes
due to TF. Based on these experiences, we improved
the platform, which allows now for automated deploy-
ment and runtime-monitoring of services.

As shown in Figure 2, the application employs four
services and two connectors: In three rounds, the
cobot arm is repositioned, the Cam Source takes a pic-
ture and the Python AI extracts relevant properties.
First, the QR code of the car is detected. Then, for the
two pictures taken from the sides of the car, the AI de-
tects wheel color, engraving, number of windows and

3Illustrating video: https://youtu.be/36Xtw1L2XkQ.
4https://www.phoenixcontact.com

OPC UA 
Connector

AAS 
Connector

App AAS
Cam 

Source
Action

Decider
Python 

AI

AAS Product
Registry

AXC 3152

IIP-Ecosphere platform

UR5e

Figure 2: Application components and data flows.

scratches. The AI results are received by the Action

Decider, which compares them to the AAS car config-
uration (identified by the QR code) and delivers the
final inspection result to the App AAS. Two connec-
tors integrate the edge (OPC UA connector) and the
car configuration AAS (AAS connector). Based on
its modelling in the platform configuration the deploy-
able application was generated through model-based
integration, which also inserts Micrometer probes.

We briefly describe now the Python-based AI ser-
vice as core subject of our performance measurements,
which is based on generally available AI frameworks
that can be executed on both, the edge and the PC.
The tire color detection is solved using a range-based
threshold with ranges for the four configurable col-
ors. For the remaining tasks we utilized deep convolu-
tional neural networks (CNNs) with separable convo-
lutional layers, a light-weight alternative (smaller and
less compute intensive) to normal convolution with-
out significantly impacting performance [2]. Given the
limited capacity of the target edge device, we train a
distinct model for each task that can be loaded when
required, instead of training one big model for all three
tasks. For each task we apply thresholding for pre-
processing to eliminate colors within the range of the
car’s color. For a detailed description of the prepro-
cessing steps, loss functions and illustrations of the AI
approach, please refer to [8].

4 Performance Experiment

For the initial application, a first measurement of the
AI response time indicated a performance drop of fac-
tor 7-12 between edge and PC [8]. From the improved
solution, we expect better results.

W. r. t. hardware, as in [8] we use a Phoenix Con-
tact AXC F 3152 edge with a 2 core Intel Atom pro-
cessor, 2 GByte RAM, and 32 GByte SD-based hard
drive. For the central installation, we use a Lenovo
ThinkCentre with an Intel Core i5-7400 3.00 GHz, 32
GByte RAM and 2 TByte SDD. Our software setup5

consists of the IIP-Ecosphere platform on Linux (De-
bian 11 on the PC, custom on the AXC). We compare
two variants, running the AI a) on the edge and b)

5https://doi.org/10.5281/zenodo.7157607

https://youtu.be/36Xtw1L2XkQ
https://www.phoenixcontact.com
https://doi.org/10.5281/zenodo.7157607


variant a) no broker a) broker b) PC
first 2.13 2.20 0,61
min 1.79 1.80 0,38
avg 1.83 1.84 0,51
stddev 0.03 0.02 0,14
max 1.89 1.91 0,83

Table 1: AI inference response times (in seconds)

on the PC (as “compensation”, with the camera and
OPC UA connector running on the edge). As in a live
demonstration, the PC also runs the AAS server, the
central broker and Prometheus. As the AI in variant
a) is the only service on the edge, we can devise two
sub-variants, with and without local broker. The AI
service is realized in Python 3.8.10 using TF-lite 2.8.0.

We measure the response time by directly instru-
menting the Python script. Further, we take the mem-
ory usage reported by Micrometer/Prometheus into
account. One run of the quality inspection process
takes around 50 seconds and delivers three response
time values, one per picture. We repeat the process
10 times leading to 30 measures per (sub-)variant.

Table 1 summarizes the measured response times.
For each (sub-)variant, we consider the first measure-
ment as an outlier as it includes AI model loading.
While the two sub-variants on the edge do not differ
much, the PC runs the AI in average 3.6 times faster.
However, it exposes a higher deviation, an effect prob-
ably caused by the platform services on the PC. While
the edge device operates at 95 % memory usage prob-
ably due to swapping, the PC utilizes around 30 % of
its memory. Running the same AI script on the same
device without platform services leads to an execution
time of around 1s, which we consider as baseline.

The results are positive compared to our initial
measurement [8]. In our context, the measured times
are acceptable, as this is just a fraction of the time
that the robot arm takes for moving among two posi-
tions. However, in a factory environment with a typi-
cal machine pace of 8 ms, the AI would be a bottleneck
outside the context of our robot arm demonstrator.

Optimization options include using a different AI
library, e.g., TF instead of TF-lite, or optimized
device-/vendor-specific builds of the respective li-
brary. However, these are not available for all devices.

A smaller container could positively influence exe-
cution time as well as deployment time (which is about
3 minutes for the application services). Here, modu-
larized libraries containing only the AI inference (in
contrast to a monolithic TF with a size of more than
2 GByte) could be helpful, but are often not provided.

Code optimization is mostly promising for the plat-
form components since more than 89 % of the execu-
tion time in the AI script is spent on the AI inference
(AI optimization would be required here).

Finally, hardware acceleration through graphic
(GPU) or tensor (TPU) processors, which slowly be-

come available for industrial edge devices, could sig-
nificantly improve the response time.

5 Conclusion & Future work

In this paper, we provided initial performance insights
into automatically deploying AI functionality onto an
industrial edge device. The AI originates from a visual
quality inspection use case and was intentionally de-
veloped without upfront optimizations. We deployed
the AI service utilizing the standard-based infrastruc-
ture capabilities of the IIP-Ecosphere platform.

Our results indicate that a general purpose CNN
AI can be successfully deployed on an industrial edge,
here a device for real time control applications in
control cabinets. With more powerful devices or in-
dustrial PCs, which nowadays may include GPUs or
TPUs, better performance is possible. Further opti-
mizations are outlined in the previous section.

As future work, we plan to further optimize the
AI execution performance on resource-limited indus-
trial devices. In particular, we are interested in the
extent to which building TensorFlow from source for
the instruction set of the target system and with ar-
chitecture specific compiler options or hardware co-
processors, can improve the execution performance.
Further, we plan to equip our platform with ready-to-
use AI services, e.g., for federated learning.

References

[1] P. Charalampidis, E. Tragos, and A. Fragki-
adakis. “A fog-enabled IoT platform for efficient
management and data collection”. In: Computer
Aided Modeling and Design of Communication
Links and Networks. 2017, pp. 1–6.

[2] A. G. Howard et al. “Mobilenets: Efficient con-
volutional neural networks for mobile vision ap-
plications”. In: arXiv:1704.04861 (2017).

[3] S. Chen et al. “An IoT Edge Computing Sys-
tem Architecture and its Application”. In: Inter-
national Conference on Networking, Sensing and
Control (ICNSC). 2020, pp. 1–7.

[4] F. Foukalas. “Cognitive IoT platform for fog com-
puting industrial applications”. In: Computers &
Electrical Engineering 87 (2020), p. 106770.

[5] G. Palmer et al. “The Automated Inspection of
Opaque Liquid Vaccines”. In: ECAI 2020. 2020,
pp. 1898–1905.

[6] M. G. Casado and H. Eichelberger. “Industry
4.0 Resource Monitoring - Experiences With Mi-
crometer and Asset Administration Shells”. In:
Symposium on Software Performance. 2021.

[7] C. Sauer et al. Current Industrie 4.0 Platforms –
An Overview. doi:10.5281/zenodo.4485756. 2021.

[8] H. Eichelberger et al. “Developing an AI-enabled
IIoT platform - Lessons learned from early use
case validation”. In: SASI4 @ ECSA’22. 2022.


	Introduction
	Platform
	Visual Inspection Use Case
	Performance Experiment
	Conclusion & Future work

